cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A103919 Triangle of numbers of partitions of n with total number of odd parts equal to k from {0,...,n}.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 0, 4, 0, 2, 0, 1, 3, 0, 5, 0, 2, 0, 1, 0, 7, 0, 5, 0, 2, 0, 1, 5, 0, 9, 0, 5, 0, 2, 0, 1, 0, 12, 0, 10, 0, 5, 0, 2, 0, 1, 7, 0, 17, 0, 10, 0, 5, 0, 2, 0, 1, 0, 19, 0, 19, 0, 10, 0, 5, 0, 2, 0, 1, 11, 0, 28, 0, 20, 0, 10, 0, 5, 0, 2, 0, 1, 0, 30, 0, 33, 0, 20, 0, 10, 0, 5, 0, 2, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

The partition (0) of n=0 is included. For n>0 no part 0 appears.
The first (k=0) column gives the number of partitions without odd parts, i.e., those with even parts only. See A035363.
Without the alternating zeros this becomes a triangle with columns given by the rows of the S_n(m) table shown in the Riordan reference.
From Gregory L. Simay, Oct 31 2015: (Start)
T(2n+k,k) = the number of partitions of n with parts 1..k of two kinds. If n<=k, then T(2n+k) = A000712(n), the number of partitions of n with parts of two kinds.
T(2n+k) = the convolution of A000041(n) and the number of partitions of n+k having exactly k parts.
T(2n+k) = d(n,k) where d(n,0) = p(n) and d(n,k) = d(n,k-1) + d(n-k,k-1) + d(n-2k,k-1) + ... (End)
From Emeric Deutsch, Oct 04 2016: (Start)
T(n,k) = number of partitions (p1 >= p2 >= p3 >= ...) of n having alternating sum p1 - p2 + p3 - ... = k. Example: T(5,3) = 2 because there are two partitions (3,1,1) and (4,1) of 5 with alternating sum 3.
The equidistribution of the partition statistics "alternating sum" and "total number of odd parts" follows by conjugation. (End)

Examples

			The triangle a(n,k) begins:
n\k 0  1  2  3  4  5  6  7  8  9 10
0:  1
1:  0  1
2:  1  0  1
3:  0  2  0  1
4:  2  0  2  0  1
5:  0  4  0  2  0  1
6:  3  0  5  0  2  0  1
7:  0  7  0  5  0  2  0  1
8:  5  0  9  0  5  0  2  0  1
9:  0 12  0 10  0  5  0  2  0  1
10: 7  0 17  0 10  0  5  0  2  0  1
... Reformatted - _Wolfdieter Lang_, Apr 28 2013
a(0,0) = 1 because n=0 has no odd part, only one even part, 0, by definition. a(5,3) = 2 because there are two partitions (1,1,3) and (1,1,1,2) of 5 with exactly 3 odd parts.
From _Gregory L. Simay_, Oct 31 2015: (Start)
T(10,4) = T(2*3+4,4) = d(3,4) = A000712(3) = 10.
T(10,2) = T(2*4+2,2) = d(4,2) = d(4,1)+d(2,1)+d(0,1) = d(4,0)+d(3,0)+d(2,0)+d(1,0)+d(0,0) + d(2,0)+d(1,0)+d(0,0) + d(0,0) = convolution sum p(4)+p(3)+2*p(2)+2*p(1)+3*p(0) = 5+3+2*2+2*1+3*1 = 17.
T(9,1) = T(8,0) + T(7,1) = 5 + 7 = 12.
(End)
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

Row sums gives A000041 (partition numbers). Columns: k=0: A035363 (with zero entries) A000041 (without zero entries), k=1: A000070, k=2: A000097, k=3: A000098, k=4: A000710, 3k>=n: A000712.
Cf. A066897.
The strict version (without zeros) is A152146 interleaved with A152157.
The rows (without zeros) are A239830 interleaved with A239829.
The reverse version (without zeros) is the right half of A344612.
Removing all zeros gives A344651.
The strict reverse version (without zeros) is the right half of A344739.

Programs

  • Maple
    g:=1/product((1-t*x^(2*j-1))*(1-x^(2*j)),j=1..20): gser:=simplify(series(g,x=0,22)): P[0]:=1: for n from 1 to 18 do P[n]:=coeff(gser,x^n) od: for n from 0 to 18 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Feb 17 2006
  • Mathematica
    T[n_, k_] := T[n, k] = Which[nJean-François Alcover, Mar 05 2014, after Paul D. Hanna *)
    Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==k&]],{n,0,15},{k,0,n}] (* _Gus Wiseman, Jun 20 2021 *)
  • PARI
    {T(n, k)=if(n>=k, if(n==k, 1, if((n-k+1)%2==0, 0, if(k==0, sum(m=0, n, T(n\2, m)), T(n-1, k-1)+T(n-2*k, k)))))}
    for(n=0, 20, for(k=0, n, print1(T(n, k), ", ")); print(""))
    \\ Paul D. Hanna, Apr 27 2013

Formula

a(n, k) = number of partitions of n>=0, which have exactly k odd parts (and possibly even parts) for k from {0, ..., n}.
Sum_{k=0..n} k*T(n,k) = A066897(n). - Emeric Deutsch, Feb 17 2006
G.f.: G(t,x) = 1/Product_{j>=1} (1-t*x^(2*j-1))*(1-x^(2*j)). - Emeric Deutsch, Feb 17 2006
G.f. T(2n+k,k) = g.f. d(n,k) = (1/Product_{j=1..k} (1-x^j)) * g.f. p(n). - Gregory L. Simay, Oct 31 2015
T(n,k) = T(n-1,k-1) + T(n-2k,k). - Gregory L. Simay, Nov 01 2015

A085478 Triangle read by rows: T(n, k) = binomial(n + k, 2*k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 15, 7, 1, 1, 15, 35, 28, 9, 1, 1, 21, 70, 84, 45, 11, 1, 1, 28, 126, 210, 165, 66, 13, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 14 2003

Keywords

Comments

Coefficient array for Morgan-Voyce polynomial b(n,x). A053122 (unsigned) is the coefficient array for B(n,x). Reversal of A054142. - Paul Barry, Jan 19 2004
This triangle is formed from even-numbered rows of triangle A011973 read in reverse order. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k+1 peaks. T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k peaks at height >= 2. T(n,k) is the number of directed column-convex polyominoes of area n+1, having k+1 columns. - Emeric Deutsch, May 31 2004
Riordan array (1/(1-x), x/(1-x)^2). - Paul Barry, May 09 2005
The triangular matrix a(n,k) = (-1)^(n+k)*T(n,k) is the matrix inverse of A039599. - Philippe Deléham, May 26 2005
The n-th row gives absolute values of coefficients of reciprocal of g.f. of bottom-line of n-wave sequence. - Floor van Lamoen (fvlamoen(AT)planet.nl), Sep 24 2006
Unsigned version of A129818. - Philippe Deléham, Oct 25 2007
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k >=1 (height(alpha) = |Im(alpha)|) and of waist n (waist(alpha) = max(Im(alpha))). - Abdullahi Umar, Oct 02 2008
A085478 is jointly generated with A078812 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n>1, u(n,x) = u(n-1,x)+x*v(n-1)x and v(n,x) = u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Per Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle given by (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
T(n,k) is also the number of compositions (ordered partitions) of 2*n+1 into 2*k+1 parts which are all odd. Proof: The o.g.f. of column k, x^k/(1-x)^(2*k+1) for k >= 0, is the o.g.f. of the odd-indexed members of the sequence with o.g.f. (x/(1-x^2))^(2*k+1) (bisection, odd part). Thus T(n,k) is obtained from the sum of the multinomial numbers A048996 for the partitions of 2*n+1 into 2*k+1 parts, all of which are odd. E.g., T(3,1) = 3 + 3 from the numbers for the partitions [1,1,5] and [1,3,3], namely 3!/(2!*1!) and 3!/(1!*2!), respectively. The number triangle with the number of these partitions as entries is A152157. - Wolfdieter Lang, Jul 09 2012
The matrix elements of the inverse are T^(-1)(n,k) = (-1)^(n+k)*A039599(n,k). - R. J. Mathar, Mar 12 2013
T(n,k) = A258993(n+1,k) for k = 0..n-1. - Reinhard Zumkeller, Jun 22 2015
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the algebraic function F(x)*G(x)^n about 0, where F(x) = (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) and G(x) = ((1 + sqrt(1 + 4*x))/2)^2. For example, for n = 4, (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) * ((1 + sqrt(1 + 4*x))/2)^8 = (x^4 + 10*x^3 + 15*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 23 2018
Row n also gives the coefficients of the characteristc polynomial of the tridiagonal n X n matrix M_n given in A332602: Phi(n, x) := Det(M_n - x*1_n) = Sum_{k=0..n} T(n, k)*(-x)^k, for n >= 0, with Phi(0, x) := 1. - Wolfdieter Lang, Mar 25 2020
It appears that the largest root of the n-th degree polynomial is equal to the sum of the distinct diagonals of a (2*n+1)-gon including the edge, 1. The largest root of x^3 - 6*x^2 + 5*x - 1 is 5.048917... = the sum of (1 + 1.80193... + 2.24697...). Alternatively, the largest root of the n-th degree polynomial is equal to the square of sigma(2*n+1). Check: 5.048917... is the square of sigma(7), 2.24697.... Given N = 2*n+1, sigma(N) (N odd) can be defined as 1/(2*sin(Pi/(2*N))). Relating to the 9-gon, the largest root of x^4 - 10*x^3 + 15*x^2 - 7*x + 1 is 8.290859..., = the sum of (1 + 1.879385... + 2.532088... + 2.879385...), and is the square of sigma(9), 2.879385... Refer to A231187 for a further clarification of sigma(7). - Gary W. Adamson, Jun 28 2022
For n >=1, the n-th row is given by the coefficients of the minimal polynomial of -4*sin(Pi/(4*n + 2))^2. - Eric W. Weisstein, Jul 12 2023
Denoting this lower triangular array by L, then L * diag(binomial(2*k,k)^2) * transpose(L) is the LDU factorization of A143007, the square array of crystal ball sequences for the A_n X A_n lattices. - Peter Bala, Feb 06 2024
T(n, k) is the number of occurrences of the periodic substring (01)^k in the periodic string (01)^n (see Proposition 4.7 at page 7 in Fang). - Stefano Spezia, Jun 09 2024

Examples

			Triangle begins as:
  1;
  1    1;
  1    3    1;
  1    6    5    1;
  1   10   15    7    1;
  1   15   35   28    9    1;
  1   21   70   84   45   11    1;
  1   28  126  210  165   66   13    1;
  1   36  210  462  495  286   91   15    1;
  1   45  330  924 1287 1001  455  120   17    1;
  1   55  495 1716 3003 3003 1820  680  153   19    1;
...
From _Philippe Deléham_, Mar 26 2012: (Start)
(0, 1, 0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) begins:
  1
  0, 1
  0, 1,  1
  0, 1,  3,   1
  0, 1,  6,   5,   1
  0, 1, 10,  15,   7,   1
  0, 1, 15,  35,  28,   9,  1
  0, 1, 21,  70,  84,  45, 11,  1
  0, 1, 28, 126, 210, 165, 66, 13, 1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k, 2*k) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a085478 n k = a085478_tabl !! n !! k
    a085478_row n = a085478_tabl !! n
    a085478_tabl = zipWith (zipWith a007318) a051162_tabl a025581_tabl
    -- Reinhard Zumkeller, Jun 22 2015
    
  • Magma
    [Binomial(n+k, 2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    T := (n,k) -> binomial(n+k,2*k): seq(seq(T(n,k), k=0..n), n=0..11);
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A085478 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A078812 *) (*Clark Kimberling, Feb 25 2012 *)
    (* Second program *)
    Table[Binomial[n + k, 2 k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 01 2019 *)
    CoefficientList[Table[Fibonacci[2 n + 1, Sqrt[x]], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Jul 03 2023 *)
    Join[{{1}}, CoefficientList[Table[MinimalPolynomial[-4 Sin[Pi/(4 n + 2)]^2, x], {n, 20}], x]] (* Eric W. Weisstein, Jul 12 2023 *)
  • PARI
    T(n,k) = binomial(n+k,n-k)
    
  • Sage
    [[binomial(n+k,2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n, k) = (n+k)!/((n-k)!*(2*k)!).
G.f.: (1-z)/((1-z)^2-tz). - Emeric Deutsch, May 31 2004
Row sums are A001519 (Fibonacci(2n+1)). Diagonal sums are A011782. Binomial transform of A026729 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
T(n, 0) = 1, T(n, k) = 0 if n=0} T(n-1-j, k-1)*(j+1). T(0, 0) = 1, T(0, k) = 0 if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j). For the column k, g.f.: Sum_{n>=0} T(n, k)*x^n = (x^k) / (1-x)^(2*k+1). - Philippe Deléham, Feb 15 2004
Sum_{k=0..n} T(n,k)*x^(2*k) = A000012(n), A001519(n+1), A001653(n), A078922(n+1), A007805(n), A097835(n), A097315(n), A097838(n), A078988(n), A097841(n), A097727(n), A097843(n), A097730(n), A098244(n), A097733(n), A098247(n), A097736(n), A098250(n), A097739(n), A098253(n), A097742(n), A098256(n), A097767(n), A098259(n), A097770(n), A098262(n), A097773(n), A098292(n), A097776(n) for x=0,1,2,...,27,28 respectively. - Philippe Deléham, Dec 31 2007
T(2*n,n) = A005809(n). - Philippe Deléham, Sep 17 2009
A183160(n) = Sum_{k=0..n} T(n,k)*T(n,n-k). - Paul D. Hanna, Dec 27 2010
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 06 2012
O.g.f. for column k: x^k/(1-x)^(2*k+1), k >= 0. [See the o.g.f. of the triangle above, and a comment on compositions. - Wolfdieter Lang, Jul 09 2012]
E.g.f.: (2/sqrt(x + 4))*sinh((1/2)*t*sqrt(x + 4))*cosh((1/2)*t*sqrt(x)) = t + (1 + x)*t^3/3! + (1 + 3*x + x^2)*t^5/5! + (1 + 6*x + 5*x^2 + x^3)*t^7/7! + .... Cf. A091042. - Peter Bala, Jul 29 2013
T(n, k) = A065941(n+3*k, 4*k) = A108299(n+3*k, 4*k) = A194005(n+3*k, 4*k). - Johannes W. Meijer, Sep 05 2013
Sum_{k=0..n} (-1)^k*T(n,k)*A000108(k) = A000007(n) for n >= 0. - Werner Schulte, Jul 12 2017
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A001006(n) for n >= 0. - Werner Schulte, Jul 12 2017
From Peter Bala, Jun 26 2025: (Start)
The n-th row polynomial b(n, x) = (-1)^n * U(2*n, (i/2)*sqrt(x)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
b(n, x) = (-1)^n * Dir(n, -1 - x/2), where Dir(n, x) is the n-th row polynomial of the triangle A244419.
b(n, -1 - x) is the n-th row polynomial of A098493. (End)

A344651 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with alternating sum k, with k ranging from n mod 2 to n in steps of 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 1, 4, 2, 1, 3, 5, 2, 1, 7, 5, 2, 1, 5, 9, 5, 2, 1, 12, 10, 5, 2, 1, 7, 17, 10, 5, 2, 1, 19, 19, 10, 5, 2, 1, 11, 28, 20, 10, 5, 2, 1, 30, 33, 20, 10, 5, 2, 1, 15, 47, 35, 20, 10, 5, 2, 1, 45, 57, 36, 20, 10, 5, 2, 1, 22, 73, 62, 36, 20, 10, 5, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. This is equal to the number of odd parts in the conjugate partition, so T(n,k) is the number of integer partitions of n with k odd parts in the conjugate partition, which is also the number of partitions of n with k odd parts.
Also the number of integer partitions of n with odd-indexed parts (odd bisection) summing to k, ceiling(n/2) <= k <= n. The even-indexed version is A346633. - Gus Wiseman, Nov 29 2021

Examples

			Triangle begins:
   1
   1
   1   1
   2   1
   2   2   1
   4   2   1
   3   5   2   1
   7   5   2   1
   5   9   5   2   1
  12  10   5   2   1
   7  17  10   5   2   1
  19  19  10   5   2   1
  11  28  20  10   5   2   1
  30  33  20  10   5   2   1
  15  47  35  20  10   5   2   1
  45  57  36  20  10   5   2   1
  22  73  62  36  20  10   5   2   1
  67  92  64  36  20  10   5   2   1
  30 114 102  65  36  20  10   5   2   1
  97 147 107  65  36  20  10   5   2   1
Row n = 10 counts the following partitions (A = 10):
  (55)          (64)         (73)       (82)     (91)   (A)
  (3322)        (442)        (433)      (622)    (811)
  (4411)        (541)        (532)      (721)
  (222211)      (3331)       (631)      (7111)
  (331111)      (4222)       (5221)     (61111)
  (22111111)    (4321)       (6211)
  (1111111111)  (5311)       (42211)
                (22222)      (52111)
                (32221)      (511111)
                (33211)      (4111111)
                (43111)
                (322111)
                (421111)
                (2221111)
                (3211111)
                (31111111)
                (211111111)
The conjugate version is:
  (A)      (55)      (3331)     (331111)    (31111111)   (1111111111)
  (64)     (73)      (5311)     (511111)    (211111111)
  (82)     (91)      (7111)     (3211111)
  (442)    (433)     (33211)    (4111111)
  (622)    (532)     (43111)    (22111111)
  (4222)   (541)     (52111)
  (22222)  (631)     (61111)
           (721)     (322111)
           (811)     (421111)
           (3322)    (2221111)
           (4321)
           (4411)
           (5221)
           (6211)
           (32221)
           (42211)
           (222211)
		

Crossrefs

This is A103919 with all zeros removed.
The strict version is A152146 interleaved with A152157.
The rows are those of A239830 interleaved with those of A239829.
The reverse version is the right half of A344612.
The strict reverse version is the right half of A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A027187 counts partitions with rev-alternating sum <= 0, ranked by A028260.
A124754 lists alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344607 counts partitions with rev-alternating sum >= 0, ranked by A344609.
A344608 counts partitions with rev-alternating sum < 0, ranked by A119899.
A344610 counts partitions of n by positive rev-alternating sum.
A344611 counts partitions of 2n with rev-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
A346697 gives the sum of odd-indexed prime indices (reverse: A346699).
A346702 represents the odd bisection of compositions, sums A209281.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],ats[#]==k&]],{n,0,15},{k,Mod[n,2],n,2}]

A344650 Number of strict odd-length integer partitions of 2n.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 11, 16, 23, 32, 44, 61, 82, 111, 148, 195, 256, 334, 432, 557, 713, 908, 1152, 1455, 1829, 2291, 2859, 3554, 4404, 5440, 6697, 8222, 10066, 12288, 14964, 18176, 22023, 26625, 32117, 38656, 46432, 55661, 66592, 79523, 94793, 112792, 133984
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

Also the number of strict integer partitions of 2n with reverse-alternating sum >= 0.
Also the number of reversed strict integer partitions of 2n with alternating sum >= 0.

Examples

			The a(1) = 1 through a(8) = 16 partitions:
  (2)  (4)  (6)      (8)      (10)     (12)     (14)      (16)
            (3,2,1)  (4,3,1)  (5,3,2)  (5,4,3)  (6,5,3)   (7,5,4)
                     (5,2,1)  (5,4,1)  (6,4,2)  (7,4,3)   (7,6,3)
                              (6,3,1)  (6,5,1)  (7,5,2)   (8,5,3)
                              (7,2,1)  (7,3,2)  (7,6,1)   (8,6,2)
                                       (7,4,1)  (8,4,2)   (8,7,1)
                                       (8,3,1)  (8,5,1)   (9,4,3)
                                       (9,2,1)  (9,3,2)   (9,5,2)
                                                (9,4,1)   (9,6,1)
                                                (10,3,1)  (10,4,2)
                                                (11,2,1)  (10,5,1)
                                                          (11,3,2)
                                                          (11,4,1)
                                                          (12,3,1)
                                                          (13,2,1)
                                                          (6,4,3,2,1)
		

Crossrefs

The Heinz numbers are the intersection of A030059 and A300061.
Allowing even length gives A035294 (non-strict: A058696).
Even bisection of A067659.
The opposite type of strict partition (even length and odd sum) is A343942.
The non-strict version is A236559 or A344611.
Row sums of A344649.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A124754 gives alternating sums of standard compositions (reverse: A344618).
A152146 interleaved with A152157 counts strict partitions by sum and alternating sum.
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A343941 counts strict partitions of 2n with reverse-alternating sum 4.
A344604 counts wiggly compositions with twins.
A344739 counts strict partitions by sum and reverse-alternating sum.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(2*n$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 05 2021
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,30,2}]

Formula

Sum of odd-indexed terms in row 2n of A008289.
a(n) = A067659(2n).

A344739 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with reverse-alternating sum k, with k ranging from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 0, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 2, 2, 1, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. So T(n,k) is the number of strict integer partitions of n such that k is equal to (-1)^(m-1) times the number of odd conjugate parts.
By conjugation, T(n,k) is also equal to the number of integer partitions of n covering an initial interval of positive integers such that k is equal to (-1)^(r-1) times the number of odd parts, where r is the greatest part.
Also the number of reversed strict integer partitions of n with alternating sum k.

Examples

			Triangle begins:
                                      1
                                    0   1
                                  0   0   1
                                0   1   0   1
                              0   1   0   0   1
                            0   1   1   0   0   1
                          0   1   1   0   1   0   1
                        0   1   1   1   0   1   0   1
                      0   1   1   1   0   1   1   0   1
                    0   1   1   1   1   0   2   1   0   1
                  0   1   1   1   2   0   1   2   1   0   1
                0   1   1   1   2   1   0   2   2   1   0   1
              0   1   1   1   2   2   0   1   3   2   1   0   1
            0   1   1   1   2   3   1   0   2   3   2   1   0   1
          0   1   1   1   2   3   3   0   1   3   3   2   1   0   1
        0   1   1   1   2   3   4   1   0   3   4   3   2   1   0   1
      0   1   1   1   2   3   5   3   0   1   4   4   3   2   1   0   1
    0   1   1   1   2   3   5   5   1   0   3   5   4   3   2   1   0   1
  0   1   1   1   2   3   5   6   4   0   1   5   6   4   3   2   1   0   1
For example, the partitions counted by row n = 15 are (empty columns shown as dots, A...F = 10..15):
  .  E1  D2  C3  B4    A5    96    87  .  762    654  843  A32  C21  .  F
                 9321  7431  6432         861    753  942  B31
                       8421  6531         54321  852  A41
                             7521                951
		

Crossrefs

Row sums are A000009.
The non-reverse version is A152146 interleaved with A152157.
The non-strict version is A344612.
The right halves of even-indexed rows are A344649.
The non-reverse non-strict version is the right half of A344651, which is A239830 interleaved with A239829.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A124754 lists alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions of n by positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&sats[#]==k&]],{n,0,12},{k,-n,n,2}]

A239829 Triangular array: T(n,k) = number of partitions of 2n - 1 that have alternating sum 2k - 1.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 7, 5, 2, 1, 12, 10, 5, 2, 1, 19, 19, 10, 5, 2, 1, 30, 33, 20, 10, 5, 2, 1, 45, 57, 36, 20, 10, 5, 2, 1, 67, 92, 64, 36, 20, 10, 5, 2, 1, 97, 147, 107, 65, 36, 20, 10, 5, 2, 1, 139, 227, 177, 110, 65, 36, 20, 10, 5, 2, 1, 195, 345, 282, 184
Offset: 1

Views

Author

Clark Kimberling, Mar 28 2014

Keywords

Comments

Suppose that p, with parts x(1) >= x(2) >= ... >= x(k), is a partition of n. Define AS(p), the alternating sum of p, by x(1) - x(2) + x(3) - ... + ((-1)^(k-1))*x(k); note that AS(p) has the same parity as n. Column 1 is given by T(n,1) = (number of partitions of 2n-1 having AS(p) = 1) = A000070(n) for n >= 1. Columns 2 and 3 are essentially A000098 and A103924, and the limiting column (after deleting initial 0's), A000712. The sum of numbers in row n is A000041(2n-1). The corresponding array for partitions into distinct parts is given by A152157 (defined as the number of partitions of 2n+1 into 2k+1 odd parts).

Examples

			First nine rows:
1
2 ... 1
4 ... 2 ... 1
7 ... 5 ... 2 ... 1
12 .. 10 .. 5 ... 2 ... 1
19 .. 19 .. 10 .. 5 ... 2 ... 1
30 .. 33 .. 20 .. 10 .. 5 ... 2 ... 1
45 .. 57 .. 36 .. 20 .. 10 .. 5 ... 2 ... 1
67 .. 92 .. 64 .. 36 .. 20 .. 10 .. 5 ... 2 ... 1
The partitions of 5 are 5, 41, 32, 311, 221, 2111, 11111, with respective alternating sums 5, 3, 1, 3, 1, 1, 1, so that row 2 of the array is 4 .. 2 .. 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, x^(1/2), `if`(i<1, 0,
          expand(b(n, i-1, t)+`if`(i>n, 0, b(n-i, i, -t)*x^((t*i)/2)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(2*n-1$2, 1)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Mar 30 2014
  • Mathematica
    z = 15; s[w_] := s[w] = Total[Take[#, ;; ;; 2]] - Total[Take[Rest[#], ;; ;; 2]] &[w]; c[n_] := c[n] = Table[s[IntegerPartitions[n][[k]]], {k, 1, PartitionsP[n]}]; t[n_, k_] := Count[c[2 n - 1], 2 k - 1]; u = Table[t[n, k], {n, 1, z}, {k, 1, n}]
    TableForm[u]  (* A239829, array *)
    Flatten[u]    (* A239829, sequence *)
    (* Peter J. C. Moses, Mar 21 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, x^(1/2), If[i<1, 0, Expand[b[n, i-1, t] + If[i>n, 0, b[n-i, i, -t]*x^((t*i)/2)]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[2n-1, 2n-1, 1]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Aug 27 2016, after Alois P. Heinz *)

A152146 Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= n) = number of partitions of 2n into 2k odd parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 1, 0, 3, 3, 2, 1, 1, 0, 3, 5, 3, 2, 1, 1, 0, 4, 6, 5, 3, 2, 1, 1, 0, 4, 9, 7, 5, 3, 2, 1, 1, 0, 5, 11, 11, 7, 5, 3, 2, 1, 1, 0, 5, 15, 14, 11, 7, 5, 3, 2, 1, 1, 0, 6, 18, 20, 15, 11, 7, 5, 3, 2, 1, 1, 0, 6, 23, 26, 22, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Sep 25 2009, indices corrected Jul 09 2012

Keywords

Comments

In both this and A152157, reading columns downwards "converges" to A000041.
Also the number of strict integer partitions of 2n with alternating sum 2k. Also the number of normal integer partitions of 2n of which 2k parts are odd, where a partition is normal if it covers an initial interval of positive integers. - Gus Wiseman, Jun 20 2021

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  2  1   1
  0  2  2   1   1
  0  3  3   2   1   1
  0  3  5   3   2   1   1
  0  4  6   5   3   2   1  1
  0  4  9   7   5   3   2  1  1
  0  5 11  11   7   5   3  2  1  1
  0  5 15  14  11   7   5  3  2  1  1
  0  6 18  20  15  11   7  5  3  2  1  1
  0  6 23  26  22  15  11  7  5  3  2  1  1
  0  7 27  35  29  22  15 11  7  5  3  2  1  1
  0  7 34  44  40  30  22 15 11  7  5  3  2  1 1
  0  8 39  58  52  42  30 22 15 11  7  5  3  2 1 1
  0  8 47  71  70  55  42 30 22 15 11  7  5  3 2 1 1
  0  9 54  90  89  75  56 42 30 22 15 11  7  5 3 2 1 1
  0  9 64 110 116  97  77 56 42 30 22 15 11  7 5 3 2 1 1
  0 10 72 136 146 128 100 77 56 42 30 22 15 11 7 5 3 2 1 1
From _Gus Wiseman_, Jun 20 2021: (Start)
For example, row n = 6 counts the following partitions (B = 11):
  (75)  (3333)  (333111)  (33111111)  (3111111111)  (111111111111)
  (93)  (5331)  (531111)  (51111111)
  (B1)  (5511)  (711111)
        (7311)
        (9111)
The corresponding strict partitions are:
  (7,5)      (8,4)      (9,3)    (10,2)   (11,1)  (12)
  (6,5,1)    (5,4,3)    (7,3,2)  (9,2,1)
  (5,4,2,1)  (6,4,2)    (8,3,1)
             (7,4,1)
             (6,3,2,1)
The corresponding normal partitions are:
  43221    33321     3321111    321111111   21111111111  111111111111
  322221   332211    32211111   2211111111
  2222211  432111    222111111
           3222111
           22221111
(End)
		

Crossrefs

Cf. A035294 (row sums), A107379, A152140, A152157.
Column k = 1 is A004526.
Column k = 2-8 is A026810 - A026816.
The non-strict version is A239830.
The reverse non-strict version is A344610.
The reverse version is A344649
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A067659 counts strict partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sum of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-2)+`if`(i>n, 0, expand(sqrt(x)*b(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(2*n, 2*n-1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Jun 21 2021
  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&ats[#]==k&]],{n,0,30,2},{k,0,n,2}] (* Gus Wiseman, Jun 20 2021 *)

Formula

T(n,k) = A152140(2n,2k).

A152140 Triangle read by rows: T(n,k) (n>=0, 0<=k<=n) = number of partitions of n into k odd parts.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 3, 0, 3, 0, 2, 0, 1, 0, 1, 0, 1, 0, 4, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 3, 0, 5, 0, 3, 0, 2, 0, 1, 0, 1, 0, 1, 0, 5, 0, 5, 0, 3, 0, 2, 0, 1, 0, 1
Offset: 0

Views

Author

R. J. Mathar, Sep 25 2009, offset corrected Jul 09 2012

Keywords

Comments

The number of partitions of n into k odd parts is equal to the number of partitions of (n+k)/2 into k parts; or equivalently the number of partitions of (n-k)/2 into at most k parts. - Franklin T. Adams-Watters, Sep 25 2009

Examples

			n= 0, k= 0: [];
n= 1, k= 1: [1] ;
n= 2, k= 2: [1, 1] ;
n= 3, k= 1: [3] ;
n= 3, k= 3: [1, 1, 1] ;
n= 4, k= 2: [1, 3] ;
n= 4, k= 4: [1, 1, 1, 1];
n= 5, k= 1: [5];
n= 5, k= 3: [1, 1, 3];
n= 5, k= 5: [1, 1, 1, 1, 1];
n= 6, k= 2: [3, 3] or [1, 5];
n= 6, k= 4: [1, 1, 1, 3];
n= 6, k= 6: [1, 1, 1, 1, 1, 1];
Triangle begins:
1
0 1
0 0 1
0 1 0 1
0 0 1 0 1
0 1 0 1 0 1
0 0 2 0 1 0 1
0 1 0 2 0 1 0 1
0 0 2 0 2 0 1 0 1
0 1 0 3 0 2 0 1 0 1
0 0 3 0 3 0 2 0 1 0 1
0 1 0 4 0 3 0 2 0 1 0 1
0 0 3 0 5 0 3 0 2 0 1 0 1
0 1 0 5 0 5 0 3 0 2 0 1 0 1
0 0 4 0 6 0 5 0 3 0 2 0 1 0 1
0 1 0 7 0 7 0 5 0 3 0 2 0 1 0 1
0 0 4 0 9 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 8 0 10 0 7 0 5 0 3 0 2 0 1 0 1
0 0 5 0 11 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 10 0 13 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 0 5 0 15 0 14 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 12 0 18 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 0 6 0 18 0 20 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 14 0 23 0 21 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 0 6 0 23 0 26 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 16 0 30 0 28 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 0 7 0 27 0 35 0 29 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 19 0 37 0 38 0 30 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 0 7 0 34 0 44 0 40 0 30 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 21 0 47 0 49 0 41 0 30 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 0 8 0 39 0 58 0 52 0 42 0 30 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 24 0 57 0 65 0 54 0 42 0 30 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 0 8 0 47 0 71 0 70 0 55 0 42 0 30 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 27 0 70 0 82 0 73 0 56 0 42 0 30 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 0 9 0 54 0 90 0 89 0 75 0 56 0 42 0 30 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
0 1 0 30 0 84 0 105 0 94 0 76 0 56 0 42 0 30 0 22 0 15 0 11 0 7 0 5 0 3 0 2 0 1 0 1
		

Crossrefs

Cf. A000009 (row sums), A097304, A107379, A152146, A152157.

Programs

  • Maple
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 elif irem(i, 2)=0 then b(n, i-1)
          else []; for j from 0 to n/i do zip((x, y)->x+y, %,
          [0$j, b(n-i*j, i-2)], 0) od; %[] fi
        end:
    T:= n-> b(n$2):
    seq(T(n), n=0..13);  # Alois P. Heinz, May 31 2013
  • Mathematica
    nn = 10; CoefficientList[
    Series[Product[1/(1 - y x^i), {i, 1, nn, 2}], {x, 0, nn}], {x, y}] (* Geoffrey Critzer, May 31 2013 *)
Showing 1-8 of 8 results.