cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A378783 Triangular array T(n,k) read by rows: T(n, k) = c_k(n+1). The sequence c_k(m) has the ordinary generating function C_k(x) which satisfies C_k(x) = 1/(1+C_k(x)*Sum_{t=0..k} x^(t+1)).

Original entry on oeis.org

-1, 2, 1, -5, -1, -2, 14, 1, 5, 4, -42, -1, -12, -8, -9, 132, 1, 29, 18, 22, 21, -429, -1, -73, -43, -54, -50, -51, 1430, 1, 190, 105, 135, 124, 128, 127, -4862, -1, -505, -262, -345, -315, -326, -322, -323, 16796, 1, 1363, 666, 896, 813, 843, 832, 836, 835
Offset: 0

Views

Author

Thomas Scheuerle, Dec 07 2024

Keywords

Examples

			Triangle begins:
  [0]    -1
  [1]     2,  1
  [2]    -5, -1,   -2
  [3]    14,  1,    5,    4
  [4]   -42, -1,  -12,   -8,   -9
  [5]   132,  1,   29,   18,   22,   21
  [6]  -429, -1,  -73,  -43,  -54,  -50,  -51
  [7]  1430,  1,  190,  105,  135,  124,  128,  127
  [8] -4862, -1, -505, -262, -345, -315, -326, -322, -323
.
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(2 / (Sqrt[1+4*Sum[x^(t+1),{t,0,k}]] + 1) - 1)/x,{x,0,n}];Table[T[n,k],{n,0,9},{k,0,n}]//Flatten (* Stefano Spezia, Dec 08 2024 *)
  • PARI
    column(n, max_n) = { my(s = 1,x = 'x,cu); for(k = 0, max_n-1, cu = cu+polcoeff(1/s+O(x^(k+1)), k, x); cu = cu-polcoeff(1/s+O(x^(k+1)), k-1-n, x); s = s+cu*x^(k+1)); Vec(1/s+O(x^max_n)) };
    T(n, k) = column(k, n+2)[n+2]
    T(n, k) = polcoeff(2 / (sqrt(1+4*x*sum(t=0, k, x^t)) + 1) + O(x^(n+2)), n+1, x)

Formula

G.f. column k: (2 / (sqrt(1+4*Sum_{t=0..k}x^(t+1)) + 1) - 1)/x.
T(n, 0) = (-1)^(n+1)*Catalan(n+1) = A168491(n+1).
T(n, 2) = (-1)^(n+1)*A152171(n+1).
T(n, n) = (-1)^(n+1)*A001006(n) = -A166587(n+1).
A378816(n) = Limit_{k->oo} (T(k, k-n) - T(k, k-n-1)).
Showing 1-1 of 1 results.