cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A147703 Triangle [1,1,1,0,0,0,...] DELTA [1,0,0,0,...] with Deléham DELTA defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 13, 27, 20, 7, 1, 34, 80, 73, 35, 9, 1, 89, 234, 252, 151, 54, 11, 1, 233, 677, 837, 597, 269, 77, 13, 1, 610, 1941, 2702, 2225, 1199, 435, 104, 15, 1, 1597, 5523, 8533, 7943, 4956, 2158, 657, 135, 17, 1
Offset: 0

Views

Author

Paul Barry, Nov 10 2008

Keywords

Comments

Equal to A062110*A007318 when A062110 is regarded as a triangle read by rows.

Examples

			Triangle begins
   1;
   1,   1;
   2,   3,   1;
   5,   9,   5,   1;
  13,  27,  20,   7,  1;
  34,  80,  73,  35,  9,  1;
  89, 234, 252, 151, 54, 11, 1;
		

Crossrefs

Row sums are A006012. Diagonal sums are A147704.

Programs

  • Maple
    # The function RiordanSquare is defined in A321620:
    RiordanSquare(1 / (1 - x / (1 - x / (1 - x))), 10); # Peter Luschny, Jan 26 2020
  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 2*x)/(1 - (3 + y)*x + (1 + y)*x^2), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 11 2017 *)

Formula

Riordan array ((1-2x)/(1-3x+x^2), x(1-x)/(1-3x+x^2)).
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Dec 01 2008
G.f.: (1-2*x)/(1-(3+y)*x+(1+y)*x^2). - Philippe Deléham, Nov 26 2011
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), for n > 1. - Philippe Deléham, Feb 12 2012
The Riordan square of the odd indexed Fibonacci numbers A001519. - Peter Luschny, Jan 26 2020

A152187 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 20, 85, 355, 1490, 6245, 26185, 109780, 460265, 1929695, 8090410, 33919705, 142211165, 596232020, 2499751885, 10480415755, 43940006690, 184222098845, 772366329985, 3238209484180, 13576460102465, 56920427728295
Offset: 0

Views

Author

Philippe Deléham, Nov 28 2008

Keywords

Comments

Unsigned version of A152185.
From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 and 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the corner squares to A015523 and for the central square to A179606.
This sequence belongs to a family of sequences with g.f. (1+2*x)/(1 - 3*x - k*x^2). Red king sequences that are members of this family are A007483 (k=2), A108981 (k=4), A152187 (k=5; this sequence), A154964 (k=6), A179602 (k=7) and A179598 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A036563 (k=-2), A054486 (k=-1), A084244 (k=0), A108300 (k=1) and A000351 (k=10).
Inverse binomial transform of A015449 (without the first leading 1).
(End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,5},{1,5},40] (* Harvey P. Dale, May 03 2013 *)

Formula

G.f.: (1+2*x)/(1 - 3*x - 5*x^2).
Lim_{k->infinity} a(n+k)/a(k) = (A072263(n) + A015523(n)*sqrt(29))/2. - Johannes W. Meijer, Aug 01 2010
G.f.: G(0)*(1+2*x)/(2-3*x), where G(k) = 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013

A062110 A(n,k) is the coefficient of x^k in (1-x)^n/(1-2*x)^n for n, k >= 0; Table A read by descending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 8, 12, 9, 4, 1, 0, 16, 28, 25, 14, 5, 1, 0, 32, 64, 66, 44, 20, 6, 1, 0, 64, 144, 168, 129, 70, 27, 7, 1, 0, 128, 320, 416, 360, 225, 104, 35, 8, 1, 0, 256, 704, 1008, 968, 681, 363, 147, 44, 9, 1, 0, 512, 1536, 2400, 2528, 1970
Offset: 0

Views

Author

Henry Bottomley, May 30 2001

Keywords

Comments

The triangular version of this square array is defined by T(n,k) = A(k,n-k) for 0 <= k <= n. Conversely, A(n,k) = T(n+k,n) for n,k >= 0. We have [o.g.f of T](x,y) = [o.g.f. of A](x*y, x) and [o.g.f. of A](x,y) = [o.g.f. of T](y,x/y). - Petros Hadjicostas, Feb 11 2021
From Paul Barry, Nov 10 2008: (Start)
As number triangle, Riordan array (1, x(1-x)/(1-2x)). A062110*A007318 is A147703.
[0,1,1,0,0,0,....] DELTA [1,0,0,0,.....]. (Philippe Deléham's DELTA is defined in A084938.) (End)
Modulo 2, this triangle T becomes triangle A106344. - Philippe Deléham, Dec 18 2008

Examples

			Table A(n,k) (with rows n >= 0 and columns k >= 0) begins:
  1, 0,  0,   0,   0,    0,    0,     0,     0,     0, ...
  1, 1,  2,   4,   8,   16,   32,    64,   128,   256, ...
  1, 2,  5,  12,  28,   64,  144,   320,   704,  1536, ...
  1, 3,  9,  25,  66,  168,  416,  1008,  2400,  5632, ...
  1, 4, 14,  44, 129,  360,  968,  2528,  6448, 16128, ...
  1, 5, 20,  70, 225,  681, 1970,  5500, 14920, 39520, ...
  1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, ...
  ... - _Petros Hadjicostas_, Feb 15 2021
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,   1;
  0,   4,   5,   3,   1;
  0,   8,  12,   9,   4,   1;
  0,  16,  28,  25,  14,   5,   1;
  0,  32,  64,  66,  44,  20,   6,   1;
  0,  64, 144, 168, 129,  70,  27,   7,   1;
  0, 128, 320, 416, 360, 225, 104,  35,   8,   1;
  ... - _Philippe Deléham_, Nov 30 2008
		

Crossrefs

Columns of A include A000012, A001477, A000096, A000297.
Main diagonal of A is A002002.
Table A(n, k) is a multiple of 2^(k-n); dividing by this gives a table similar to A050143 except at the edges.
Essentially the same array as A105306, A160232.

Programs

  • Mathematica
    t[n_, n_] = 1; t[n_, k_] := 2^(n-2*k)*k*Hypergeometric2F1[1-k, n-k+1, 2, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 30 2013, after Philippe Deléham + symbolic sum *)
  • PARI
    a(i,j)=if(i<0 || j<0,0,polcoeff(((1-x)/(1-2*x)+x*O(x^j))^i,j))

Formula

Formulas for the square array (A(n,k): n,k >= 0):
A(n, k) = A(n-1, k) + Sum_{0 <= j < k} A(n, j) for n >= 1 and k >= 0 with A(0, k) = 0^k for k >= 0.
G.f.: 1/(1-x*(1-y)/(1-2*y)) = Sum_{i, j >= 0} A(i, j) x^i*y^j.
From Petros Hadjicostas, Feb 15 2021: (Start)
A(n,k) = 2^(k-n)*n*hypergeom([1-n, k+1], [2], -1) for n >= 0 and k >= 1.
A(n,k) = 2*A(n,k-1) + A(n-1,k) - A(n-1,k-1) for n,k >= 1 with A(n,0) = 1 for n >= 0 and A(0,k) = 0 for k >= 1. (End)
Formulas for the triangle (T(n,k): 0 <= k <= n):
From Philippe Deléham, Aug 01 2006: (Start)
T(n,k) = A121462(n+1,k+1)*2^(n-2*k) for 0 <= k < n.
T(n,k) = 2^(n-2*k)*k*hypergeom([1-k, n-k+1], [2], -1) for 0 <= k < n. (End)
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Dec 09 2008
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 1 <= k <= n-1 with T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013
G.f.: Sum_{n.k>=0} T(n,k)*x^n*y^k = (1 - 2*x)/(x^2*y - x*y - 2*x + 1). - Petros Hadjicostas, Feb 15 2021

Extensions

Various sections edited by Petros Hadjicostas, Feb 15 2021
Showing 1-3 of 3 results.