cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152211 a(n) = n * sigma_0(n) + sigma_1(n).

Original entry on oeis.org

2, 7, 10, 19, 16, 36, 22, 47, 40, 58, 34, 100, 40, 80, 84, 111, 52, 147, 58, 162, 116, 124, 70, 252, 106, 146, 148, 224, 88, 312, 94, 255, 180, 190, 188, 415, 112, 212, 212, 410, 124, 432, 130, 348, 348, 256, 142, 604
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 29 2008

Keywords

Comments

a(n) is the sum of all parts plus the total number of parts of all partitions of n into equal parts. - Omar E. Pol, Nov 30 2019

Examples

			For n = 4 the partitions of 4 into equal parts are [4], [2,2], [1,1,1,1]. The sum of all parts is 4 + 2 + 2 + 1 + 1 + 1 + 1 = 12. There are 7 parts, so a(4) = 12 + 7 = 19. - _Omar E. Pol_, Nov 30 2019
		

Crossrefs

Programs

  • Mathematica
    Array[Total[{#, 1} DivisorSigma[{0, 1}, #]] &, 48] (* Michael De Vlieger, Dec 01 2019 *)
  • PARI
    a(n) =  n*numdiv(n) + sigma(n) \\ Michel Marcus, Jun 02 2013

Formula

a(n) = n * A000005(n) + A000203(n).
a(n) = A038040(n) + A000203(n). - Torlach Rush, Feb 01 2019
G.f.: Sum_{k>=1} (k + 1) * x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Aug 14 2019
Sum_{k=1..n} a(k) ~ (n^2/2) * (log(n) + 2*gamma + zeta(2) - 1/2), where gamma is Euler's constant (A001620). - Amiram Eldar, Feb 01 2025