A152218 Numbers k such that sigma_2(k)*sigma_1(k)/sigma_0(k) is a perfect square.
1, 4, 529, 2116, 2583, 3249, 3346, 6150, 10332, 12474, 12792, 12996, 28224, 38240, 59245, 85905, 91035, 103607, 142560, 176382, 212949, 236980, 249744, 343620, 360096, 364140, 379050, 414428, 450840, 751530, 787710, 788424, 851796, 1059474, 1132096, 1366407
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..500 (terms 1..200 from Donovan Johnson)
Programs
-
Mathematica
fQ[n_] := IntegerQ[ Sqrt[ DivisorSigma[2, n] DivisorSigma[1, n]/DivisorSigma[0, n]]]; k = 1; lst = {}; While[k < 1132096, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Sep 10 2010 *) Select[Range[137*10^4],IntegerQ[Sqrt[(DivisorSigma[2,#]DivisorSigma[ 1,#])/ DivisorSigma[ 0,#]]]&] (* Harvey P. Dale, Jun 18 2018 *)
-
PARI
isok(k) = {my(f = factor(k)); issquare(sigma(f, 2) * sigma(f) / numdiv(f));} \\ Amiram Eldar, Feb 01 2025
Extensions
Correct definition recovered by Jack Brennen
12 more terms from R. J. Mathar, Aug 25 2010
More terms from Robert G. Wilson v, Sep 10 2010