cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152260 Triangle T(n, k) = [x^k] p(n, x), where p(n, x) = (1/n)*(1-x)^(2*n) * Sum_{j >= 0} binomial(n+j-1, j) * j^n * x^(j-1).

Original entry on oeis.org

1, 1, 2, 1, 10, 9, 1, 32, 113, 64, 1, 86, 786, 1526, 625, 1, 212, 4182, 18932, 24337, 7776, 1, 498, 19167, 170332, 477807, 450066, 117649, 1, 1136, 80103, 1266400, 6584615, 12910704, 9492289, 2097152, 1, 2542, 314928, 8313394, 72899230, 254556594, 375886768, 225159022, 43046721
Offset: 1

Views

Author

Roger L. Bagula, Dec 01 2008

Keywords

Comments

A generalization of for n=m: q(x,n,m) = (1-x)^(n+m) * Sum_{j >= 0} binomial(m+j-1, j) * j^n * x^(j-1).

Examples

			Polynomials, p(n, x), begin as:
  p(1, x) = 1;
  p(2, x) = 1 +   2*x;
  p(3, x) = 1 +  10*x +    9*x^2;
  p(4, x) = 1 +  32*x +  113*x^2 +    64*x^3;
  p(5, x) = 1 +  86*x +  786*x^2 +  1526*x^3 +   625*x^4;
  p(6, x) = 1 + 212*x + 4182*x^2 + 18932*x^3 + 24337*x^4 + 7776*x^5;
Triangle, T(n, k), begins as:
  1;
  1,    2;
  1,   10,     9;
  1,   32,   113,      64;
  1,   86,   786,    1526,     625;
  1,  212,  4182,   18932,   24337,     7776;
  1,  498, 19167,  170332,  477807,   450066,  117649;
  1, 1136, 80103, 1266400, 6584615, 12910704, 9492289, 2097152;
		

References

  • Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91

Crossrefs

Programs

  • Magma
    A152260:= func< n,k | (&+[(-1)^(k+j)*Binomial(2*n,k-j)*Binomial(n+j-1,j)*j^n: j in [1..k]])/n >;
    [A152260(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, May 23 2023
    
  • Mathematica
    p[x_, n_]:= ((1-x)^(2*n)/n)*Sum[Binomial[k+n-1,k]*k^n*x^(k-1), {k, 0, Infinity}];
    Table[CoefficientList[p[x, n], x], {n,12}]//Flatten
    (* Second program *)
    T[n_, k_]:= (1/n)*Sum[Binomial[2*n,k-j]*Binomial[n+j-1,j]*(-1)^(k+j) *j^n, {j,k}];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 23 2023 *)
  • SageMath
    def A152260(n,k): return (1/n)*sum( (-1)^(k+j)*binomial(2*n,k-j)*binomial(n+j-1,j)*j^n for j in range(1,k+1) )
    flatten([[A152260(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, May 23 2023

Formula

T(n, k) = [x^k] p(n, x), where p(n, x) = (1/n)*(1-x)^(2*n) * Sum_{j >= 0} binomial(n+j-1, j) * j^n * x^(j-1).
Sum_{k=1..n} T(n, k) = A006963(n).
T(n, m) = Sum_{k=1..m} binomial(n+k,k)*binomial(n-k,m-k)*k!*(-1)^(m-k) * Stirling2(n,k)*1/(n+k) (conjectured). - Michael D. Weiner, Jul 01 2020
From G. C. Greubel, May 23 2023: (Start)
T(n, k) = (1/n)*Sum_{j=0..k-1} (-1)^(k+j+1)*binomial(2*n, k-j-1) * binomial(n+j, j+1) * (j+1)^n.
T(n, n) = A000169(n).
T(n, n-1) = A176824(n). (End)