A152260 Triangle T(n, k) = [x^k] p(n, x), where p(n, x) = (1/n)*(1-x)^(2*n) * Sum_{j >= 0} binomial(n+j-1, j) * j^n * x^(j-1).
1, 1, 2, 1, 10, 9, 1, 32, 113, 64, 1, 86, 786, 1526, 625, 1, 212, 4182, 18932, 24337, 7776, 1, 498, 19167, 170332, 477807, 450066, 117649, 1, 1136, 80103, 1266400, 6584615, 12910704, 9492289, 2097152, 1, 2542, 314928, 8313394, 72899230, 254556594, 375886768, 225159022, 43046721
Offset: 1
Examples
Polynomials, p(n, x), begin as: p(1, x) = 1; p(2, x) = 1 + 2*x; p(3, x) = 1 + 10*x + 9*x^2; p(4, x) = 1 + 32*x + 113*x^2 + 64*x^3; p(5, x) = 1 + 86*x + 786*x^2 + 1526*x^3 + 625*x^4; p(6, x) = 1 + 212*x + 4182*x^2 + 18932*x^3 + 24337*x^4 + 7776*x^5; Triangle, T(n, k), begins as: 1; 1, 2; 1, 10, 9; 1, 32, 113, 64; 1, 86, 786, 1526, 625; 1, 212, 4182, 18932, 24337, 7776; 1, 498, 19167, 170332, 477807, 450066, 117649; 1, 1136, 80103, 1266400, 6584615, 12910704, 9492289, 2097152;
References
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1275
Programs
-
Magma
A152260:= func< n,k | (&+[(-1)^(k+j)*Binomial(2*n,k-j)*Binomial(n+j-1,j)*j^n: j in [1..k]])/n >; [A152260(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, May 23 2023
-
Mathematica
p[x_, n_]:= ((1-x)^(2*n)/n)*Sum[Binomial[k+n-1,k]*k^n*x^(k-1), {k, 0, Infinity}]; Table[CoefficientList[p[x, n], x], {n,12}]//Flatten (* Second program *) T[n_, k_]:= (1/n)*Sum[Binomial[2*n,k-j]*Binomial[n+j-1,j]*(-1)^(k+j) *j^n, {j,k}]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 23 2023 *)
-
SageMath
def A152260(n,k): return (1/n)*sum( (-1)^(k+j)*binomial(2*n,k-j)*binomial(n+j-1,j)*j^n for j in range(1,k+1) ) flatten([[A152260(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, May 23 2023
Formula
T(n, k) = [x^k] p(n, x), where p(n, x) = (1/n)*(1-x)^(2*n) * Sum_{j >= 0} binomial(n+j-1, j) * j^n * x^(j-1).
Sum_{k=1..n} T(n, k) = A006963(n).
T(n, m) = Sum_{k=1..m} binomial(n+k,k)*binomial(n-k,m-k)*k!*(-1)^(m-k) * Stirling2(n,k)*1/(n+k) (conjectured). - Michael D. Weiner, Jul 01 2020
From G. C. Greubel, May 23 2023: (Start)
T(n, k) = (1/n)*Sum_{j=0..k-1} (-1)^(k+j+1)*binomial(2*n, k-j-1) * binomial(n+j, j+1) * (j+1)^n.
T(n, n) = A000169(n).
T(n, n-1) = A176824(n). (End)
Comments