A152308 Primes p such that the multiplicative order of 2 modulo p is (p-1)/8.
73, 89, 233, 937, 1217, 1249, 1289, 1433, 1553, 1609, 1721, 1913, 2441, 2969, 3257, 3449, 4049, 4201, 4273, 4297, 4409, 4481, 4993, 5081, 5297, 5689, 6089, 6449, 6481, 6689, 6857, 7121, 7529, 7993, 8081, 8609, 8969, 9137, 9281, 9769, 10337, 10369
Offset: 1
Keywords
Links
- Klaus Brockhaus, Table of n, a(n) for n=1..1000
Programs
-
Magma
[ p: p in PrimesUpTo(10369) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,8) where R is ResidueClassRing(p) ];
-
Mathematica
okQ[p_] := MultiplicativeOrder[2, p] == (p-1)/8; Select[Prime[Range[2000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
-
PARI
Vec(select(p->((p!=2) && (znorder(Mod(2, p)) == (p-1)/8)), primes(10000))) \\ Michel Marcus, Feb 09 2015