cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152419 Decimal expansion of 3-Pi^2/6-zeta(3).

Original entry on oeis.org

1, 5, 3, 0, 0, 9, 0, 2, 9, 9, 9, 2, 1, 7, 9, 2, 7, 8, 1, 2, 7, 8, 4, 6, 6, 7, 1, 8, 4, 2, 5, 2, 4, 8, 2, 0, 0, 1, 6, 0, 6, 3, 8, 0, 6, 4, 5, 2, 7, 0, 2, 6, 8, 0, 4, 7, 2, 1, 7, 0, 2, 1, 5, 2, 8, 8, 1, 5, 4, 3, 2, 3, 8, 1, 0, 4, 8, 6, 0, 3, 5, 9, 7, 9, 9, 1, 5, 2, 2, 5, 7, 7, 0, 9, 0, 6, 0, 3, 6, 5, 4, 9, 7, 9, 6
Offset: 0

Views

Author

R. J. Mathar, Dec 03 2008

Keywords

Comments

Consider the constants N(s) = Sum_{n>=2} 1/(n^s*(n-1)) = s-Sum_{k=2..s} zeta(k), where zeta() is Riemann's zeta function. We have N(1)=1 and this constant here is N(3).

Examples

			0.15300902999217927812784667184252482001606380645270268047217021528815...
		

Crossrefs

Cf. A013661 (Pi^2/6), A002117 (zeta(3)).
Cf. A152416.

Programs

  • Maple
    evalf(3-Pi^2/6-Zeta(3));
  • Mathematica
    RealDigits[3-Pi^2/6-Zeta[3],10,120][[1]] (* Harvey P. Dale, Jul 01 2022 *)
  • PARI
    3-Pi^2/6-zeta(3) \\ Charles R Greathouse IV, Jan 31 2017
    
  • Sage
    t(n) = 1/(n*(n+1)^(3));
    sum(t(n), n, 1, oo).n(digits=107); # Jani Melik, Nov 20 2020

Formula

Equals 3-A013661-A002117.