A152423 A variation of the Josephus problem, removing every other person, starting with person 1; a(n) is the last person remaining.
1, 2, 2, 4, 2, 4, 6, 8, 2, 4, 6, 8, 10, 12, 14, 16, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
Offset: 1
Examples
From _Omar E. Pol_, Dec 16 2013: (Start) It appears that this is also an irregular triangle with row lengths A011782 as shown below: 1; 2; 2,4; 2,4,6,8; 2,4,6,8,10,12,14,16; 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32; 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40, 42,44,46,48,50,52,54,56,58,60,62,64; Right border gives A000079. (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..8192
- Eric Weisstein's World of Mathematics, Josephus Problem
- Wikipedia, Josephus problem
- Index entries for sequences related to the Josephus Problem
Crossrefs
The Index to the OEIS lists 21 entries under "Josephus problem". - N. J. A. Sloane, Dec 04 2008
Programs
-
Maple
a:= n-> 2*n - 2^ceil(log[2](n)): seq(a(n), n=1..74); # Alois P. Heinz, Nov 22 2023
-
Mathematica
A152423[n_]:=2n-2^Ceiling[Log2[n]];Array[A152423,100] (* Paolo Xausa, Nov 23 2023 *)
-
PHP
function F($in){ $a[1] = 1; if($in == 1){ return $a;} $temp =2; for($i=2;$i<=$in;$i++){ $temp+=2; if($temp>$i){ $temp = 2 ; } $answer[] = $temp; } return $answer; } #change $n value for the result $n=5; #sequence store in $answer by using $a = F($n); #to display a(n) echo $a[n];
-
Python
m=len(bin(n))-3; print(n if 2**m==n else 2*(n-2**m)) # Nicolas Patrois, Apr 19 2021
Formula
a(1)=1, a(2)=2; for n > 2, a(n)=2 if n < a(n-1) + 2, otherwise a(n) = a(n-1) + 2.
a(n)=n if n is a power of 2, otherwise a(n)=2*(n-2^m) where m is the exponent of the nearest power of 2 below n. - Nicolas Patrois, Apr 19 2021
a(n) = 2*n - 2^ceiling(log_2(n)). - Alois P. Heinz, Nov 22 2023
Extensions
Edited by Jon E. Schoenfield, Feb 29 2020
Comments