cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152440 Riordan matrix (1/(1-x-x^2),x/(1-x-x^2)^2).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 9, 5, 1, 5, 22, 20, 7, 1, 8, 51, 65, 35, 9, 1, 13, 111, 190, 140, 54, 11, 1, 21, 233, 511, 490, 255, 77, 13, 1, 34, 474, 1295, 1554, 1035, 418, 104, 15, 1, 55, 942, 3130, 4578, 3762, 1925, 637, 135, 17, 1, 89, 1836, 7285, 12720, 12573, 7865, 3276
Offset: 0

Views

Author

Emanuele Munarini, Dec 04 2008, Dec 05 2008

Keywords

Comments

From Philippe Deléham, Feb 20 2014: (Start)
T(n,0) = A000045(n+1);
T(n+1,1) = A001628(n);
T(n+2,2) = A001873(n);
T(n+3,3) = A001875(n).
Row sums are A238236(n). (End)

Examples

			Triangle begins:
1;
1, 1;
2, 3, 1;
3, 9, 5, 1;
5, 22, 20, 7, 1;
8, 51, 65, 35, 9, 1;
13, 111, 190, 140, 54, 11, 1;
21, 233, 511, 490, 255, 77, 13, 1, etc.
- _Philippe Deléham_, Feb 20 2014
		

Crossrefs

The first row is given by A000045.

Formula

a(n,k) = sum( binomial(n-j-k,2k) binomial(n-j-k,j), j=0...(n-k)/2 )
a(n,k) = sum( binomial(i+2k,2k) binomial(n-i+k,i+2k), i=0...(n - k)/2 )
Recurrence: a(n+4,k+1) - 2 a(n+3,k+1) - a(n+3,k) - a(n+2,k+1) + 2 a(n+1,k+1) + a(n,k+1) = 0
GF for columns: 1/(1-x-x^2)(x/(1-x-x^2)^2)^k
GF: (1-x-x^2)/((1-x-x^2)^2-xy)
T(n,k) = A037027(n+k, 2*k). - Philippe Deléham, Feb 20 2014