cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152448 a(0)=a(1)=1, a(2)=6, a(3)=11; a(n+4) = 10*a(n+2) - a(n).

Original entry on oeis.org

1, 1, 6, 11, 59, 109, 584, 1079, 5781, 10681, 57226, 105731, 566479, 1046629, 5607564, 10360559, 55509161, 102558961, 549484046, 1015229051, 5439331299, 10049731549, 53843828944, 99482086439, 532998958141, 984771132841, 5276145752466, 9748229241971, 52228458566519
Offset: 0

Views

Author

Richard Choulet, Dec 04 2008

Keywords

Crossrefs

Cf. A054320 (bisection).

Programs

  • Mathematica
    LinearRecurrence[{0,10,0,-1},{1,1,6,11},30] (* Harvey P. Dale, Nov 10 2018 *)

Formula

a(n) = ((1/48)*sqrt(3)*sqrt(2) + 1/4 + (1/8)*sqrt(2))*(sqrt(3) + sqrt(2))^n + (-(1/48)*sqrt(3)*sqrt(2) + 1/4 - (1/8)*sqrt(2))*(sqrt(3) - sqrt(2))^n + ((1/48)*sqrt(3)*sqrt(2) + 1/4 - (1/8)*sqrt(2))*(-sqrt(3) - sqrt(2))^n + (1/4 - (1/48)*sqrt(3)*sqrt(2) + (1/8)*sqrt(2))*(-sqrt(3) + sqrt(2))^n.
From R. J. Mathar and Philippe Deléham, Dec 05 2008: (Start)
a(2n) = A004189(n+1) - 4*A004189(n).
a(2n+1) = A004189(n) + A004189(n+1).
G.f.: (1+x-4x^2+x^3) / (1-10x^2+x^4). (End)