A152451 From every interval (2^(m-1), 2^m), we remove primes p for which 2^m-p is a prime; the sequence gives the remaining odd primes.
3, 7, 17, 23, 31, 37, 43, 71, 73, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 179, 181, 191, 193, 199, 211, 223, 229, 241, 257, 263, 269, 277, 281, 293, 307, 311, 317, 337, 347, 353, 359, 367, 379, 383, 389, 397, 401, 419, 421, 431, 443
Offset: 1
Keywords
Programs
-
PARI
lista(nn) = {forprime(p=3, nn, m = ceil(log(p)/log(2)); if (!isprime(2^m-p), print1(p, ", ")););} \\ Michel Marcus, Sep 12 2015; Jan 22 2023
Formula
If A(X) is the counting function for the terms a(n)<=x, then A(x) = x/log(x) + O(x*log(log(x))/(log(x))^2).
Comments