A152457 Partial sums of A027444.
0, 3, 17, 56, 140, 295, 553, 952, 1536, 2355, 3465, 4928, 6812, 9191, 12145, 15760, 20128, 25347, 31521, 38760, 47180, 56903, 68057, 80776, 95200, 111475, 129753, 150192, 172956, 198215, 226145, 256928, 290752, 327811, 368305, 412440, 460428
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
Programs
-
Mathematica
Table[Sum[i + i^2 + i^3, {i, n}], {n, 0, 25}] Accumulate[Table[n^3+n^2+n,{n,0,50}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,3,17,56,140},50] (* Harvey P. Dale, Dec 13 2013 *)
-
PARI
a(n)=n*(n+1)*(3*n^2+7*n+8)/12 \\ Charles R Greathouse IV, Oct 21 2022
Formula
a(n) = n(n + 1)(3n^2 + 7n + 8)/12. - Giovanni Resta, Jun 15 2013
a(0)=0, a(1)=3, a(2)=17, a(3)=56, a(4)=140, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)- 5*a(n-4)+a(n-5). - Harvey P. Dale, Dec 13 2013
G.f.: -x*(3+2*x+x^2) / (x-1)^5 . - R. J. Mathar, Jul 18 2016
Extensions
Definition corrected by Jeremy Gardiner, Jun 15 2013
Comments