cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152487 Triangle read by rows, 0<=k<=n: T(n,k) = Levenshtein distance of n and k in binary representation.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 2, 0, 2, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 2, 0, 3, 2, 2, 1, 2, 1, 1, 0, 3, 3, 2, 3, 1, 2, 2, 3, 0, 3, 3, 2, 2, 1, 1, 2, 2, 1, 0, 3, 3, 2, 2, 1, 1, 1, 2, 1, 2, 0, 3, 3, 2, 2, 2, 1, 2, 1, 2, 1, 1, 0, 3, 3, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 0, 3, 3, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 06 2008

Keywords

Comments

T(n,k) gives number of editing steps (replace, delete and insert) to transform n to k in binary representations;
row sums give A152488; central terms give A057427;
T(n,k) <= Hamming-distance(n,k) for n and k with A070939(n)=A070939(k);
T(n,0) = A000523(n+1);
T(n,1) = A000523(n) for n>0;
T(n,3) = A106348(n-2) for n>2;
T(n,n-1) = A091090(n-1) for n>0;
T(n,n) = A000004(n);
T(A000290(n),n) = A091092(n).
T(n,k) >= A322285(n,k) - Pontus von Brömssen, Dec 02 2018

Examples

			The triangle T(n, k) begins:
  n\k  0  1  2  3  4  5  6  7  8  9 10 11 12 13 ...
   0:  0
   1:  1  0
   2:  1  1  0
   3:  2  1  1  0
   4:  2  2  1  2  0
   5:  2  2  1  1  1  0
   6:  2  2  1  1  1  2  0
   7:  3  2  2  1  2  1  1  0
   8:  3  3  2  3  1  2  2  3  0
   9:  3  3  2  2  1  1  2  2  1  0
  10:  3  3  2  2  1  1  1  2  1  2  0
  11:  3  3  2  2  2  1  2  1  2  1  1  0
  12:  3  3  2  2  1  2  1  2  1  2  2  3  0
  13:  3  3  2  2  2  1  1  1  2  1  2  2  1  0
  ...
The distance between the binary representations of 46 and 25 is 4 (via the edits "101110" - "10111" - "10011" - "11011" - "11001"), so T(46,25) = 4. - _Pontus von Brömssen_, Dec 02 2018
		

Crossrefs

Formula

T(n,k) = f(n,k) with f(x,y) = if x>y then f(y,x) else if x<=1 then Log2(y)-0^y+(1-x)*0^(y+1-2^(y+1)) else Min{f([x/2],[y/2]) + (x mod 2) XOR (y mod 2), f([x/2],y)+1, f(x,[y/2])+1}, where Log2=A000523.