A152487 Triangle read by rows, 0<=k<=n: T(n,k) = Levenshtein distance of n and k in binary representation.
0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 2, 0, 2, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 2, 0, 3, 2, 2, 1, 2, 1, 1, 0, 3, 3, 2, 3, 1, 2, 2, 3, 0, 3, 3, 2, 2, 1, 1, 2, 2, 1, 0, 3, 3, 2, 2, 1, 1, 1, 2, 1, 2, 0, 3, 3, 2, 2, 2, 1, 2, 1, 2, 1, 1, 0, 3, 3, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 0, 3, 3, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 0
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 0: 0 1: 1 0 2: 1 1 0 3: 2 1 1 0 4: 2 2 1 2 0 5: 2 2 1 1 1 0 6: 2 2 1 1 1 2 0 7: 3 2 2 1 2 1 1 0 8: 3 3 2 3 1 2 2 3 0 9: 3 3 2 2 1 1 2 2 1 0 10: 3 3 2 2 1 1 1 2 1 2 0 11: 3 3 2 2 2 1 2 1 2 1 1 0 12: 3 3 2 2 1 2 1 2 1 2 2 3 0 13: 3 3 2 2 2 1 1 1 2 1 2 2 1 0 ... The distance between the binary representations of 46 and 25 is 4 (via the edits "101110" - "10111" - "10011" - "11011" - "11001"), so T(46,25) = 4. - _Pontus von Brömssen_, Dec 02 2018
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Michael Gilleland, Levenshtein Distance
- Wikipedia, Levenshtein Distance
- Index entries for sequences related to binary expansion of n
Crossrefs
Formula
T(n,k) = f(n,k) with f(x,y) = if x>y then f(y,x) else if x<=1 then Log2(y)-0^y+(1-x)*0^(y+1-2^(y+1)) else Min{f([x/2],[y/2]) + (x mod 2) XOR (y mod 2), f([x/2],y)+1, f(x,[y/2])+1}, where Log2=A000523.
Comments