A152522 a(n) is the least even number such that if p_i is the i-th prime then a(n)-p_i, i=1..n, are composite numbers.
6, 12, 30, 98, 98, 98, 98, 220, 308, 308, 556, 556, 556, 556, 992, 992, 992, 992, 992, 992, 2642, 2642, 2642, 2642, 2642, 2642, 5372, 5372, 5372, 5372, 5372, 5372, 5372, 7426, 7426, 7426, 7426, 7426, 7426, 43532, 43532, 43532, 43532, 43532, 43532
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
- Andrew Granville, J. Van de Lune, and Herman te Riele, Checking the Goldbach Conjecture on a vector computer, Number Theory and Applications (1989), pp. 423-434.
- Bui Minh Phong, Li Dongdong, Elementary problems which are equivalent to the Goldbach’s conjecture, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 33-37.
Crossrefs
Cf. A025018.
Programs
-
Mathematica
Bag={}; f[n_]:=NestList[NextPrime,2,n]; GoldbachTest[n_?EvenQ,p_List]:=Block[{m=Length[p],i=1},While[i<=m&&CompositeQ[n-p[[i]]],i+=1];If[i>m,{0,0},{#,n-#}&[p[[i]]]]]; Do[n=4;While[(GoldbachTest[n,f[j]])!={0,0},{n=n+2}];AppendTo[Bag,n],{j,0,44}]; Bag (* Gilmar Rodriguez Pierluissi, Aug 23 2018 *)
-
PARI
a(n)=my(P=prime(n));forstep(k=6,9e99,2,forprime(p=3,P,if(isprime(k-p),next(2)));return(k)) \\ Charles R Greathouse IV, Sep 04 2011
Comments