A152581 Generalized Fermat numbers: a(n) = 8^(2^n) + 1, n >= 0.
9, 65, 4097, 16777217, 281474976710657, 79228162514264337593543950337, 6277101735386680763835789423207666416102355444464034512897
Offset: 0
Examples
For n = 3, 8^(2^3) + 1 = 16777217. Similarly, (2^8)^3 + 1 = 16777217. Then 2^8 + 1 = 257 and 16777217/257 = 65281.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10
- Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
- Eric Weisstein's World of Mathematics, Generalized Fermat Number.
- OEIS Wiki, Generalized Fermat numbers.
Crossrefs
Programs
-
Magma
[8^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
-
Mathematica
Table[8^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
-
PARI
g(a,n) = if(a%2,b=2,b=1);for(x=0,n,y=a^(2^x)+b;print1(y","))
-
PARI
a(n)=1<<(3*2^n)+1 \\ Charles R Greathouse IV, Jul 29 2011
Formula
a(0)=9, a(n) = (a(n-1) - 1)^2 + 1, n >= 1.
Sum_{n>=0} 2^n/a(n) = 1/7. - Amiram Eldar, Oct 03 2022
Extensions
Edited by Daniel Forgues, Jun 19 2011
Comments