cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152581 Generalized Fermat numbers: a(n) = 8^(2^n) + 1, n >= 0.

Original entry on oeis.org

9, 65, 4097, 16777217, 281474976710657, 79228162514264337593543950337, 6277101735386680763835789423207666416102355444464034512897
Offset: 0

Views

Author

Cino Hilliard, Dec 08 2008

Keywords

Comments

These numbers are all composite. We rewrite 8^(2^n) + 1 = (2^(2^n))^3 + 1.
Then by the identity a^n + b^n = (a+b)*(a^(n-1) - a^(n-2)*b + ... + b^(n-1)) for odd n, 2^(2^n) + 1 divides 8^(2^n) + 1. All factors of generalized Fermat numbers F_n(a,b) := a^(2^n)+b^(2^n), a >= 2, n >= 0, are of the form k*2^m+1, k >= 1, m >=0 (Riesel (1994)). - Daniel Forgues, Jun 19 2011

Examples

			For n = 3, 8^(2^3) + 1 = 16777217. Similarly, (2^8)^3 + 1 = 16777217. Then 2^8 + 1 = 257 and 16777217/257 = 65281.
		

Crossrefs

Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).

Programs

Formula

a(0)=9, a(n) = (a(n-1) - 1)^2 + 1, n >= 1.
Sum_{n>=0} 2^n/a(n) = 1/7. - Amiram Eldar, Oct 03 2022

Extensions

Edited by Daniel Forgues, Jun 19 2011