cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152587 Generalized Fermat numbers: a(n) = 14^(2^n) + 1.

Original entry on oeis.org

15, 197, 38417, 1475789057, 2177953337809371137, 4743480741674980702700443299789930497, 22500609546641425009067997918450033531906583365663182830821882796510806017
Offset: 0

Views

Author

Cino Hilliard, Dec 08 2008

Keywords

Comments

There appears to be no divisibility rule for this sequence.

Examples

			a(0) = 14^1+1 = 15 = 13*(1)+2 = 13(empty product)+2.
a(1) = 14^2+1 = 197 = 13*(15)+2.
a(2) = 14^4+1 = 38417 = 13*(15*197)+2.
a(3) = 14^8+1 = 1475789057 = 13*(15*197*38417)+2.
a(4) = 14^16+1 = 2177953337809371137 = 13*(15*197*38417*1475789057)+2.
a(5) = 14^32+1 = 4743480741674980702700443299789930497 = 13*(15*197*38417*1475789057*2177953337809371137)+2.
		

Crossrefs

Cf. A000215.

Programs

Formula

a(0) = 15, a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = 13*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 13*(empty product, i.e., 1)+ 2 = 15 = a(0). This implies that the terms, all odd, are pairwise coprime. - Daniel Forgues, Jun 20 2011