cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A152658 Beginnings of maximal chains of primes.

Original entry on oeis.org

5, 13, 29, 37, 43, 61, 89, 109, 131, 139, 227, 251, 269, 277, 293, 359, 389, 401, 449, 461, 491, 547, 569, 607, 631, 743, 757, 773, 809, 857, 887, 947, 971, 991, 1069, 1109, 1151, 1163, 1187, 1237, 1289, 1301, 1319, 1373, 1427, 1453, 1481, 1499, 1549, 1601
Offset: 1

Views

Author

Klaus Brockhaus, Dec 10 2008

Keywords

Comments

A sequence of consecutive primes prime(k), ..., prime(k+r), r >= 1, is called a chain of primes if i*prime(i) + (i+1)*prime(i+1) is prime (the linking prime for prime(i) and prime(i+1), cf. A119487) for i from k to k+r-1. A chain of primes prime(k), ..., prime(k+r) is maximal if it is not part of a longer chain, i.e. if neither (k-1)*prime(k-1) + k*prime(k) nor (k+r)*prime(k+r) + (k+r+1)*prime(k+r+1) is prime.
A chain of primes has two or more members; a prime is called secluded if it is not member of a chain of primes (cf. A152657).

Examples

			3*prime(3) + 4*prime(4) = 3*5 + 4*7 = 43 is prime and 4*prime(4) + 5*prime(5) = 4*7 + 5*11 = 83 is prime, so 5, 7, 11 is a chain of primes. 2*prime(2) + 3*prime(3) = 2*3 + 3*5 = 21 is not prime and 5*prime(5) + 6*prime(6) = 5*11 + 6*13 = 133 is not prime, hence 5, 7, 11 is maximal and prime(3) = 5 is the beginning of a maximal chain.
		

Crossrefs

Cf. A152117 (n*(n-th prime) + (n+1)*((n+1)-th prime)), A152657 (secluded primes), A119487 (primes of the form i*(i-th prime) + (i+1)*((i+1)-th prime), linking primes).
Cf. A105454 - Zak Seidov, Feb 04 2016

Programs

  • Magma
    [ p: n in [1..253] | (n eq 1 or not IsPrime((n-1)*PreviousPrime(p) +n*p) ) and IsPrime((n)*p+(n+1)*NextPrime(p)) where p is NthPrime(n) ];

A152735 Count of links in n-th maximal chain of primes.

Original entry on oeis.org

2, 3, 1, 1, 2, 4, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Klaus Brockhaus, Dec 16 2008

Keywords

Comments

One less than count of members of n-th maximal chain of primes. For definitions see A152658.

Examples

			The consecutive primes 5, 7, 11 form the first maximal chain of primes (see example in A152658); it has three members, two links. Therefore a(1) = 2.
		

Crossrefs

Cf. A152658 (beginnings of maximal chains of primes), A152657 (secluded primes), A119487 (primes of the form i*(i-th prime) + (i+1)*((i+1)-th prime), linking primes).

Programs

  • PARI
    {n=1; while(n<560, c=0; while(isprime(n*prime(n)+(n+1)*prime(n+1)), c++; n++); if(c>0, print1(c, ",")); n++)}
Showing 1-2 of 2 results.