A152677 Subsequence of odd terms in A000203 (sum-of-divisors function sigma), in the order in which they occur and with repetitions.
1, 3, 7, 15, 13, 31, 39, 31, 63, 91, 57, 93, 127, 195, 121, 171, 217, 133, 255, 403, 363, 183, 399, 465, 403, 399, 511, 819, 307, 847, 549, 381, 855, 961, 741, 1209, 931, 1023, 553, 1651, 921, 781, 1815, 1281, 1143, 1093, 1767, 1953, 871, 2223, 2821, 993, 1995
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[d:k in [1..1000]|IsOdd(d) where d is DivisorSigma(1,k)]; // Marius A. Burtea, Jan 09 2020
-
Mathematica
Select[DivisorSigma[1, Range[1000]], OddQ[#] &] (* Giovanni Resta, Jan 08 2020 *) With[{max = 1000}, DivisorSigma[1, Union[Range[Sqrt[max]]^2, 2*Range[Sqrt[max/2]]^2]]] (* Amiram Eldar, Nov 28 2023 *)
-
PARI
A152677_upto(lim)=apply(sigma,vecsort(concat(vector(sqrtint(lim\1), i, i^2), vector(sqrtint(lim\2), i, 2*i^2)))) \\ Gives [a(n) = sigma(k) with k = A028982(n) <= lim]. - Charles R Greathouse IV, Feb 15 2013, corrected by M. F. Hasler, Jan 08 2020
Formula
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16-10*sqrt(2))*zeta(3)/Pi^2 = 0.226276... . - Amiram Eldar, Nov 28 2023
Extensions
Extended by R. J. Mathar, Dec 12 2008
Edited and definition reworded by M. F. Hasler, Jan 08 2020
Comments