cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152677 Subsequence of odd terms in A000203 (sum-of-divisors function sigma), in the order in which they occur and with repetitions.

Original entry on oeis.org

1, 3, 7, 15, 13, 31, 39, 31, 63, 91, 57, 93, 127, 195, 121, 171, 217, 133, 255, 403, 363, 183, 399, 465, 403, 399, 511, 819, 307, 847, 549, 381, 855, 961, 741, 1209, 931, 1023, 553, 1651, 921, 781, 1815, 1281, 1143, 1093, 1767, 1953, 871, 2223, 2821, 993, 1995
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2008

Keywords

Comments

Equivalently: subsequence of A000203 (sigma) with indices equal to a square or twice a square (A028982).
See A060657 for the set of odd values in the range of the sigma function, i.e., the list of odd values in ordered by increasing size and without repetitions.

Crossrefs

Cf. A000203 (sigma = sum-of-divisors function), A152678 (even terms in A000203), A028982 (squares and twice the squares).
See A062700 and A023195 for the subsequence resp. subset of primes; A023194 for the indices of A000203 which yield these primes.
Cf. A002117.

Programs

  • Magma
    [d:k in [1..1000]|IsOdd(d) where d is DivisorSigma(1,k)]; // Marius A. Burtea, Jan 09 2020
  • Mathematica
    Select[DivisorSigma[1, Range[1000]], OddQ[#] &] (* Giovanni Resta, Jan 08 2020 *)
    With[{max = 1000}, DivisorSigma[1, Union[Range[Sqrt[max]]^2, 2*Range[Sqrt[max/2]]^2]]] (* Amiram Eldar, Nov 28 2023 *)
  • PARI
    A152677_upto(lim)=apply(sigma,vecsort(concat(vector(sqrtint(lim\1), i, i^2), vector(sqrtint(lim\2), i, 2*i^2)))) \\ Gives [a(n) = sigma(k) with k = A028982(n) <= lim]. - Charles R Greathouse IV, Feb 15 2013, corrected by M. F. Hasler, Jan 08 2020
    

Formula

a(n) = A000203(A028982(n)). - R. J. Mathar, Dec 12 2008
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16-10*sqrt(2))*zeta(3)/Pi^2 = 0.226276... . - Amiram Eldar, Nov 28 2023

Extensions

Extended by R. J. Mathar, Dec 12 2008
Edited and definition reworded by M. F. Hasler, Jan 08 2020