A152689 Apply partial sum operator thrice to factorials.
0, 0, 0, 1, 4, 11, 28, 79, 284, 1363, 8356, 61583, 523924, 5024179, 53479148, 624890431, 7946278828, 109195935539, 1612048228564, 25439293045903, 427278358483556, 7609502950269523, 143217213477235804, 2840152418116022399
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450
- G. V. Milovanovich and A. Petojevich, Generalized Factorial Functions, Numbers and Polynomials, Math. Balkanica, Vol. 16 (2002), Fasc. 1-4.
Programs
-
Magma
[0] cat [((n^2 -3*n +1)*(&+[Factorial(k): k in [0..(n-1)]]) -(n-2)*Factorial(n) +2*(n-1))/2: n in [1..30]]; // G. C. Greubel, Sep 13 2018
-
Mathematica
With S[n_]:= Sum[k!, {k,0,n-1}]; Table[Sum[Sum[S[j], {j,0,m-1}], {m,0,n -1}], {n, 0, 30}] (* or *) Table[((n^2 - 3*n + 1)*S[n] - (n - 2)*n! + 2*(n - 1))/2, {n, 0, 30}] (* G. C. Greubel, Sep 13 2018 *)
-
PARI
for(n=0,30, print1(((n^2-3*n+1)*sum(k=0,n-1, k!) - (n-2)*n! + 2*(n -1))/2, ", ")) \\ G. C. Greubel, Sep 13 2018
Formula
From G. C. Greubel, Sep 13 2018: (Start)
a(n) = Sum_{j=0..(n-1)} Sum_{m=0..(j-1)} !m, where !n = Sum_{k=0..(n-1)} k! = A003422(n).
a(n) = ((n^2 -3*n +1) * !n - (n-2)*n! + 2*(n-1))/2.
a(n) = Sum_{j=0..(n-1)} ((j-1) * !j - j! + 1) = Sum_{j=0..(n-1)} A014144(n). (End)
Extensions
Prepended zeros and changed offset by G. C. Greubel, Sep 13 2018