cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152690 Partial sums of superfactorials (A000178).

Original entry on oeis.org

1, 2, 4, 16, 304, 34864, 24918064, 125436246064, 5056710181206064, 1834938528961266006064, 6658608419043265483506006064, 265790273955000365854215115506006064
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};p0=1;s0=0;Do[p0*=a[n];s0+=p0;AppendTo[lst,s0],{n,0,4!}];lst
    s = 0; lst = {s}; Do[s += BarnesG[n]; AppendTo[lst, s], {n, 2, 13, 1}]; lst (* Zerinvary Lajos, Jul 16 2009 *)
    Table[Sum[BarnesG[k+1],{k,1,n}],{n,1,15}] (* Vaclav Kotesovec, Jul 10 2015 *)

Formula

G.f.: W(0)/(2-2*x) , where W(k) = 1 + 1/( 1 - x*(k+1)!/( x*(k+1)! + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
a(n) ~ exp(1/12 - 3*n^2/4) * n^(n^2/2 - 1/12) * (2*Pi)^(n/2) / A, where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
a(n) = n! * G(n+1) + a(n-1), where G(z) is the Barnes G-function. - Daniel Suteu, Jul 23 2016