A152747 Decimal expansion of log_9 (2).
3, 1, 5, 4, 6, 4, 8, 7, 6, 7, 8, 5, 7, 2, 8, 7, 1, 8, 5, 4, 9, 7, 6, 3, 5, 5, 7, 1, 7, 1, 3, 8, 0, 4, 2, 7, 1, 4, 9, 7, 9, 2, 8, 2, 0, 0, 6, 5, 9, 4, 0, 2, 1, 3, 9, 3, 5, 3, 2, 7, 4, 7, 1, 9, 1, 9, 3, 4, 2, 6, 0, 0, 6, 9, 0, 4, 5, 7, 4, 0, 2, 5, 3, 0, 5, 8, 6, 3, 4, 4, 2, 7, 4, 7, 2, 5, 8, 7, 2
Offset: 0
Examples
.31546487678572871854976355717138042714979282006594021393532...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for transcendental numbers
Crossrefs
Cf. decimal expansion of log_9(m): this sequence, A153205 (m=5), A153495 (m=6), A153619 (m=7), A153756 (m=8), A154160 (m=10), A154181 (m=11), A154202 (m=12), A154339 (m=13), A154469 (m=14), A154578 (m=15), A154859 (m=17), A154947 (m=18), A155061 (m=19), A155503 (m=20), A155676 (m=21), A155743 (m=22), A155829 (m=23), A155976 (m=24).
Programs
-
Magma
SetDefaultRealField(RealField(100)); Log(2)/Log(9); // G. C. Greubel, Aug 31 2018
-
Mathematica
RealDigits[Log[9, 2], 10, 100][[1]] (* Vincenzo Librandi, Sep 01 2013 *)
-
PARI
default(realprecision, 100); log(2)/log(9) \\ G. C. Greubel, Aug 31 2018
Formula
Equals Integral_{x=1..oo} 1/(3^x - 3^(-x)) dx. - Amiram Eldar, Jul 16 2020