A152788 Integers k such that (k^3)/3 is the average of a pair of twin primes.
6, 30, 84, 144, 186, 204, 270, 360, 516, 576, 726, 756, 810, 990, 1020, 1140, 1446, 1500, 1836, 2010, 2250, 2304, 2820, 3204, 3366, 3564, 4170, 4320, 4344, 4416, 4590, 4656, 5160, 5220, 5820, 5976, 6120, 6204, 6276, 6534, 6876, 7260, 7710, 7806, 7866, 8256
Offset: 1
Keywords
Examples
6 is a term since (6^3)/3 = 72 and (71, 73) are twin primes. 30 is a term since (30^3)/3 = 9000 and (8999, 9001) are twin primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [3..9000 by 3]| IsPrime(k^3 div 3 -1) and IsPrime(k^3 div 3 +1)]; // Marius A. Burtea, Jan 01 2020
-
Mathematica
lst1={}; lst2={}; Do[ p1=Prime[n]; p2=Prime[n+1]; If[p2-p1==2, e=(3*(p1+1))^(1/3); i=Floor[e]; If[e==i, AppendTo[lst1,(p1+1)]; AppendTo[lst2,i]]], {n,2*10!}]; Print[lst1]; Print[lst2] fQ[n_] := PrimeQ[n^3/3 - 1] && PrimeQ[n^3/3 + 1]; lst = {}; Do[If[fQ@n, AppendTo[lst, n]], {n, 3, 10^4, 3}]; lst
Extensions
Edited and extended by Robert G. Wilson v, Dec 14 2008
Corrected divisor in definition. - R. J. Mathar, Dec 20 2008
Comments