A152815 Triangle T(n,k), read by rows given by [1,0,-1,0,0,0,0,0,0,...] DELTA [0,1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 1, 0; 1, 1, 0, 0; 1, 2, 1, 0, 0; 1, 2, 1, 0, 0, 0; 1, 3, 3, 1, 0, 0, 0; 1, 3, 3, 1, 0, 0, 0, 0; 1, 4, 6, 4, 1, 0, 0, 0, 0; ...
Links
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
Crossrefs
Programs
-
Haskell
a152815 n k = a152815_tabl !! n !! k a152815_row n = a152815_tabl !! n a152815_tabl = [1] : [1,0] : t [1,0] where t ys = zs : zs' : t zs' where zs' = zs ++ [0]; zs = zipWith (+) ([0] ++ ys) (ys ++ [0]) -- Reinhard Zumkeller, Feb 28 2012
-
Mathematica
m = 13; (* DELTA is defined in A084938 *) DELTA[Join[{1, 0, -1}, Table[0, {m}]], Join[{0, 1, -1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *) T[n_, k_] := If[n<0, 0, Binomial[Floor[n/2], k]]; (* Michael Somos, Oct 01 2022 *)
-
PARI
{T(n, k) = if(n<0, 0, binomial(n\2, k))}; /* Michael Somos, Oct 01 2022 */
Formula
Extensions
Example corrected by Philippe Deléham, Dec 13 2008
Comments