A152884 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} with excedance set equal to the k-th subset of {1,2,...,n-1} (n>=0, 0<=k<=ceiling(2^(n-1))-1). The subsets of {1,2,...,n-1} are ordered according to size, while the subsets of the same size follow the lexicographic order.
1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 3, 1, 7, 3, 1, 1, 1, 15, 7, 3, 1, 31, 17, 7, 7, 3, 1, 15, 7, 3, 1, 1, 1, 31, 15, 7, 3, 1, 115, 69, 37, 15, 31, 17, 7, 7, 3, 1, 115, 69, 31, 37, 17, 7, 15, 7, 3, 1, 31, 15, 7, 3, 1, 1, 1, 63, 31, 15, 7, 3, 1, 391, 245, 145, 77, 31, 115, 69, 37, 15, 31, 17, 7, 7, 3, 1
Offset: 0
Examples
T(5,3) = 3 because the 3rd subset of {1,2,3,4} is {3} and the permutations of {1,2,3,4,5} with excedance set {3} are 12435, 12534 and 12543. T(5,4) = 1: 12354 (4th subset of {1,2,3,4} is {4}). Triangle starts: k=0 1 2 3 4 5 6 7 8 ... n=0: 1; n=1: 1; n=2: 1, 1; n=3: 1, 3, 1, 1; n=4: 1, 7, 3, 1, 7, 3, 1, 1; n=5: 1, 15, 7, 3, 1, 31, 17, 7, 7, 3, 1, 15, 7, 3, 1, 1; ...
Links
- Alois P. Heinz, Rows n = 0..15, flattened
- R. Ehrenborg and E. Steingrimsson, The excedance set of a permutation, Advances in Appl. Math., 24, 284-299, 2000.
Crossrefs
Programs
-
Maple
n := 7: A := {1, 2, 4}: with(combinat): P := permute(n): EX := proc (p) local S, i: S := {}: for i to n-1 do if i < p[i] then S := `union`(S, {i}) else end if end do: S end proc: ct := 0: for j to factorial(n) do if EX(P[j]) = A then ct := ct+1 else end if end do: ct; # second Maple program: T:= proc(n) option remember; uses combinat; local b, i, l; l:= map(x-> {x[]}, [seq(choose([$1..n-1], i)[], i=0..n-1)]): for i to nops(l) do h(l[i]):=i od: b:= proc(s, l) option remember; (m-> `if`(m=0, x^h(l), add(b(s minus {i}, {l[], `if`(i
seq(coeff(p, x, i), i=1..degree(p)))(b({$1..n}, {})) end: T(0):=1: seq(T(n), n=0..8); # Alois P. Heinz, Jan 29 2023
Formula
T(n,k) = A000225(n-k) = 2^(n-k) - 1 for n>k>0. - Alexander R. Povolotsky, May 14 2025
Extensions
T(0,0)=1 prepended and indexing adapted by Alois P. Heinz, Jan 29 2023
Comments