cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152891 a(1) = b(1) = 0; for n > 1, b(n) = b(n-1) + n-1 + a(n-1) and a(n) = a(n-1) + n-1 + b(n).

Original entry on oeis.org

0, 2, 9, 29, 83, 226, 602, 1588, 4171, 10935, 28645, 75012, 196404, 514214, 1346253, 3524561, 9227447, 24157798, 63245966, 165580120, 433494415, 1134903147, 2971215049, 7778742024, 20365011048, 53316291146, 139583862417
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A035508. - R. J. Mathar, Dec 15 2008

Crossrefs

Cf. A000045, A001906, A035508, A054452 (b sequence).

Programs

  • Maple
    with(combinat): seq(fibonacci(2*n+1)-n-1, n = 1 .. 27); # Emeric Deutsch, Jun 01 2009
  • Mathematica
    lst={};a=b=0;Do[b+=n+a;a+=n+b;AppendTo[lst,a],{n,0,2*4!}];lst
    Table[Fibonacci[2n+1]-n-1,{n,30}] (* or *) LinearRecurrence[{5,-8,5,-1},{0,2,9,29},30] (* Harvey P. Dale, Sep 24 2013 *)

Formula

From R. J. Mathar, Dec 15 2008: (Start)
G.f.: x^2*(2 - x)/((1 - 3*x + x^2)*(1 - x)^2).
a(n) = A001906(n+1) - A001906(n) - n - 1. (End)
a(n) = Fibonacci(2*n+1) - n - 1. - Emeric Deutsch, Jun 01 2009

Extensions

Name corrected by Jon E. Schoenfield, Feb 19 2019