A152931 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of three m-gonal polygonal components chained with string components of length 2 as m varies.
4393, 80361, 1425131, 25671393, 459934921, 8258011407, 148150698209, 2658683875329, 47706585218947, 856070631915129, 15361490875216193, 275651271699299271, 4946357927482614361, 88758815221749418713, 1592712152944203460571, 28580061055811939151057
Offset: 2
Links
- S. Schlicker, L. Morales, and D. Schultheis, Polygonal chain sequences in the space of compact sets, JIS 12 (2009) 09.1.7.
- Index entries for linear recurrences with constant coefficients, signature (13, 104, -260, -260, 104, 13, -1).
Programs
-
Maple
with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, l: k:=3: l:=2: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (n, l) -> L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := (n, l) -> L(2*n)*F(l-1)+F(2*n+2)*F(l): c := (n, l) -> F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := (n, l) -> F(2*n+2)*F(l-1)+F(n+2)^2*F(l): lambda := (n,l) -> (d(n, l)+aa(n, l)+sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): delta := (n,l) -> (d(n, l)+aa(n, l)-sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): R := (n,l) -> ((lambda(n, l)-d(n, l))*L(2*n)+b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): S := (n,l) -> ((lambda(n, l)-aa(n, l))*L(2*n)-b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): simplify(R(n, l)*lambda(n, l)^(k-1)+S(n, l)*delta(n, l)^(k-1)); end proc;
-
Mathematica
LinearRecurrence[{13,104,-260,-260,104,13,-1},{4393,80361,1425131,25671393,459934921,8258011407,148150698209},20] (* Harvey P. Dale, Feb 18 2024 *)