A153126 Sums of rows of the triangle in A153125.
1, 6, 18, 33, 55, 80, 112, 147, 189, 234, 286, 341, 403, 468, 540, 615, 697, 782, 874, 969, 1071, 1176, 1288, 1403, 1525, 1650, 1782, 1917, 2059, 2204, 2356, 2511, 2673, 2838, 3010, 3185, 3367, 3552, 3744, 3939, 4141, 4346, 4558, 4773, 4995, 5220, 5452
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Mathematica
LinearRecurrence[{2,0,-2,1},{1,6,18,33},50] (* Harvey P. Dale, Apr 13 2014 *)
-
PARI
a(n)=n*(5*n+7)/2 + 1 - n%2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = n*(5*n+7)/2 + 1 - n mod 2.
a(n) = Sum_{k=1..n+1} A153125(n+1,k).
a(n) = A000566(n+1) - n mod 2.
From Colin Barker, Jul 07 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1+4*x+6*x^2-x^3)/((1-x)^3*(1+x)). (End)
Sum_{n>=0} 1/a(n) = 5/7 + 2*sqrt(1+2/sqrt(5))*Pi/21 + 2*sqrt(5)*log(phi)/21 + 5*log(5)/21 - 8*log(2)/21, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 23 2022
Comments