A153140 Coefficients of the second order mock theta function B(q).
1, 2, 4, 6, 9, 14, 20, 28, 40, 54, 72, 98, 129, 168, 220, 282, 360, 460, 580, 728, 912, 1134, 1404, 1734, 2129, 2604, 3180, 3864, 4680, 5658, 6812, 8182, 9808, 11718, 13968, 16618, 19720, 23350, 27600, 32550, 38313
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- R. J. McIntosh, Second order mock theta functions, Canad. Math. Bull. 50 (2007), 284-290.
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Sum[x^(k^2+k) * Product[(1+x^(2*j))/(1-x^(2*j+1))^2, {j, 0, k}], {k, 0, Floor[Sqrt[nmax]]}]/2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)
-
PARI
lista(nn) = my(q = qq + O(qq^nn)); gf = sum(n = 0, nn, q^n * prod(k = 1, n, 1 + q^(2*k-1)) / prod(k = 0, n, 1 - q^(2*k+1))); Vec(gf) \\ Michel Marcus, Jun 18 2013
Formula
G.f.: Sum_{n >= 0} q^(n^2+n)(1+q^2)(1+q^4)...(1+q^(2n))/(1-q)^2(1-q^3)^2...(1-q^(2n+1))^2.
G.f.: Sum_{n >= 0} q^n(1+q)(1+q^3)...(1+q^(2n-1))/(1-q)(1-q^3)...(1-q^(2n+1)).
a(n) ~ exp(Pi*sqrt(n/2)) / (2^(5/2) * sqrt(n)). - Vaclav Kotesovec, Jun 12 2019
Extensions
More terms from Michel Marcus, Jun 18 2013