cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A153169 a(n) = 4*n^2 + 12*n + 3.

Original entry on oeis.org

19, 43, 75, 115, 163, 219, 283, 355, 435, 523, 619, 723, 835, 955, 1083, 1219, 1363, 1515, 1675, 1843, 2019, 2203, 2395, 2595, 2803, 3019, 3243, 3475, 3715, 3963, 4219, 4483, 4755, 5035, 5323, 5619, 5923, 6235, 6555, 6883, 7219, 7563, 7915, 8275, 8643, 9019, 9403
Offset: 1

Views

Author

Vincenzo Librandi, Dec 20 2008

Keywords

Comments

Sequence gives values of x such that x^3 + 6*x^2 = y^2 since a(n)^3 + 6*a(n)^2 = (8*n^3 + 36*n^2 + 42*n + 9)^2.
The complete list of nonnegative values of x in x^3 + 6*x^2 = y^2 is given by A028878. - Bruno Berselli, Jan 25 2012

Crossrefs

Programs

  • Magma
    I:=[19, 43, 75]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 25 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {19, 43, 75}, 50] (* Vincenzo Librandi, Feb 25 2012 *)
  • PARI
    for(n=1, 50, print1(4*n^2 + 12*n + 3", ")); \\ Vincenzo Librandi, Feb 25 2012

Formula

From Colin Barker, Jan 24 2012: (Start)
G.f.: x*(19 - 14*x + 3*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=19, a(2)=43, a(3)=75. (End)
Sum_{n>=1} 1/a(n) = -2/15 + tan(sqrt(3/2)*Pi)*Pi/(4*sqrt(6)). - Amiram Eldar, Mar 02 2023
From Elmo R. Oliveira, Jun 03 2025: (Start)
E.g.f.: -3 + (3 + 16*x + 4*x^2)*exp(x).
a(n) = A028878(2*n) for n >= 1. (End)

Extensions

Definition rewritten by Bruno Berselli, Jan 25 2012
Showing 1-1 of 1 results.