A153179 a(n) = L(11*n)/L(n) where L(n) = A000204(n).
199, 13201, 1970299, 224056801, 28374454999, 3450736132801, 426236170575799, 52337681992411201, 6441140796368008699, 792018481913198430001, 97420733208491869044199, 11981539981561372141075201
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..475
- Index entries for linear recurrences with constant coefficients, signature (89,4895,-83215,-582505,1514513,1514513,-582505,-83215,4895,89,-1).
Programs
-
Magma
[Lucas(11*n)/Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 21 2017
-
Mathematica
Table[LucasL[11*n]/LucasL[n], {n, 1, 50}]
-
PARI
{lucas(n) = fibonacci(n+1) + fibonacci(n-1)}; for(n=0,30, print1( lucas(11*n)/lucas(n), ", ")) \\ G. C. Greubel, Dec 21 2017
Formula
From R. J. Mathar, Oct 22 2010: (Start)
a(n) = +89*a(n-1) +4895*a(n-2) -83215*a(n-3) -582505*a(n-4) +1514513*a(n-5) +1514513*a(n-6) -582505*a(n-7) -83215*a(n-8) +4895*a(n-9) +89*a(n-10) -a(n-11).
G.f.: -1 -1/(1+x) +(-2-47*x)/(x^2+47*x+1) +(2-3*x)/(x^2-3*x+1) +(-2-7*x)/(x^2+7*x+1) +(2-123*x)/(x^2-123*x+1) +(2-18*x)/(x^2-18*x+1).
Comments