A153191 a(n) = 9*a(n-1) + 6*a(n-2); a(0)=0, a(1)=1.
0, 1, 9, 87, 837, 8055, 77517, 745983, 7178949, 69086439, 664851645, 6398183439, 61572760821, 592543948023, 5702332097133, 54876252562335, 528100265643813, 5082159906168327, 48908040749377821, 470665326181410351
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, 6).
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else 9*Self(n-1) + 6*Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 24 2018
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=9*a[n-1]+6*a[n-2]od: seq(a[n], n=0..33);
-
Mathematica
LinearRecurrence[{9,6}, {0,1}, 25] (* G. C. Greubel, Jan 24 2018 *)
-
PARI
x='x+O('x^25); concat([0], Vec(x/(1-9*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018
-
Sage
[lucas_number1(n,9,-6) for n in range(0, 25)]# Zerinvary Lajos, Apr 26 2009
Formula
G.f.: x/(1 - 9*x - 6*x^2).
Extensions
Formula corrected by Philippe Deléham, Dec 20 2008
Edited by N. J. A. Sloane, Dec 21 2008