A153270 Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 2, read by rows.
3, 3, 12, 3, 15, 105, 3, 18, 162, 1944, 3, 21, 231, 3465, 65835, 3, 24, 312, 5616, 129168, 3616704, 3, 27, 405, 8505, 229635, 7577955, 295540245, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435
Offset: 0
Examples
Triangle begins as: 3; 3, 12; 3, 15, 105; 3, 18, 162, 1944; 3, 21, 231, 3465, 65835; 3, 24, 312, 5616, 129168, 3616704; 3, 27, 405, 8505, 229635, 7577955, 295540245; 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
Magma
m:=2; function T(n,k) if k eq 0 then return NthPrime(m); else return (&*[j*n + NthPrime(m): j in [0..k]]); end if; return T; end function; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
-
Maple
m:=2; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
-
Mathematica
T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]]; Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten
-
PARI
T(n,k) = my(m=2); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
-
Sage
def T(n, k): m=2 if (k==0): return nth_prime(m) else: return product(j*n + nth_prime(m) for j in (0..k)) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019
Formula
T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 2.
Extensions
Edited by G. C. Greubel, Dec 03 2019
Comments