A153273 Triangle read by rows: T(n,k) = Product_{i=0..k-2} (i*n + n - 1).
1, 2, 10, 3, 21, 231, 4, 36, 504, 9576, 5, 55, 935, 21505, 623645, 6, 78, 1560, 42120, 1432080, 58715280, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640, 9, 171, 4959, 193401, 9476649, 559122291, 38579438079, 3047775608241, 271252029133449
Offset: 2
Examples
Triangle begins as: 1; 2, 10; 3, 21, 231; 4, 36, 504, 9576; 5, 55, 935, 21505, 623645; 6, 78, 1560, 42120, 1432080, 58715280; 7, 105, 2415, 74865, 2919735, 137227545, 7547514975; 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640;
Links
- G. C. Greubel, Rows n = 2..100 of triangle, flattened
Programs
-
GAP
Flat(List([2..12], n-> List([2..n], k-> Product([0..k-2], j-> (j+1)*n-1) ))); # G. C. Greubel, Mar 05 2020
-
Magma
[(&*[j*n+n-1: j in [0..k-2]]): k in [2..n], n in [2..12]]; // G. C. Greubel, Mar 05 2020
-
Maple
A153273 := proc(n,m) local i; mul( n-1+i*n, i=0..m-2) ; end proc: seq(seq( A153273(n,m), m=2..n), n=2..12) ; # R. J. Mathar, Sep 04 2016
-
Mathematica
Table[n^(k-1)*Pochhammer[(n-1)/n, k-1], {n,2,12}, {k,2,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
-
PARI
T(n,k) = prod(j=0, k-2, j*n+n-1); for(n=2,12, for(k=2,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
Sage
[[n^(k-1)*rising_factorial((n-1)/n, k-1) for k in (2..n)] for n in (2..12)] # G. C. Greubel, Mar 05 2020
Extensions
Edited by G. C. Greubel, Mar 05 2020
Comments