cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A142589 Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 15, 4, 1, 1, 120, 105, 28, 5, 1, 1, 720, 945, 280, 45, 6, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1, 3628800, 34459425, 24344320, 5221125, 576576, 43225, 2640, 153, 10, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 22 2008

Keywords

Comments

Antidiagonal sums are {1, 2, 4, 11, 45, 260, 1998, 19735, 244797, 3729346, 68276276, ...}.

Examples

			The transpose of the array is:
    1,    1,     1,     1,      1,      1,      1,      1,     1,
    1,    2,     3,     4,      5,      6,      7,      8,     9,
    1,    6,    15,    28,     45,     66,     91,     120,   153, ... A000384
    1,   24,   105,   280,    585,   1056,   1729,    2640,  3825, ... A011199
    1,  120,   945,  3640,   9945,  22176,  43225,   76560, 126225,... A011245
    1,  720, 10395, 58240, 208845, 576576, 1339975, 2756160,...
        /      |       \       \
   A000142  A001147  A007559  A007696
		

Crossrefs

Cf. A000142, A006882(2n-1) = A001147, A007661(3n-2) = A007559, A007662(4n-3) = A007696, A153274.

Programs

  • Magma
    function T(n,k)
      if k eq 0 or n eq 0 then return 1;
      else return (&*[j*k+1: j in [0..n]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):
    seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Mar 05 2020
  • Mathematica
    T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i,0,n}]]; Table[T[n-k, k], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );
    for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    def T(n, k):
        if (k==0 and n==0): return 1
        else: return product(j*k+1 for j in (0..n))
    [[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 05 2020

Extensions

Edited by M. F. Hasler, Oct 28 2014
More terms added by G. C. Greubel, Mar 05 2020
Showing 1-1 of 1 results.