A153277 Array read by antidiagonals of higher order Bell numbers.
1, 1, 2, 1, 3, 5, 1, 4, 12, 15, 1, 5, 22, 60, 52, 1, 6, 35, 154, 358, 203, 1, 7, 51, 315, 1304, 2471, 877, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 10, 117, 1380, 14532, 120196, 660665, 1855570, 1606137, 115975
Offset: 1
Examples
The table on p.4 of Mezo begins: =========================================================== B_p,n|n=1|n=2|n=3.|.n=4.|..n=5.|....n=6.|.....n=7.|comment =========================================================== p=1..|.1.|.2.|..5.|..15.|...52.|....203.|.....877.|.A000110 p=2..|.1.|.3.|.12.|..60.|..358.|...2471.|...19302.|.A000258 p=3..|.1.|.4.|.22.|.154.|.1304.|..12915.|..146115.|.A000307 p=4..|.1.|.5.|.35.|.315.|.3455.|..44590.|..660665.|.A000357 p=5..|.1.|.6.|.51.|.561.|.7556.|.120196.|.2201856.|.A000405 ===========================================================
Links
- E. T. Bell, The iterated exponential integers, Ann. Math. 39(3) (1938), 539-557.
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- Istvan Mezo, On powers of Stirling matrices, arXiv:0812.4047.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela, A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, J.Phys. A: Math.Gen. 37 3475-3487 (2004).
Crossrefs
Programs
-
Maple
g:= proc(a) local b; b:=proc(n) option remember; if n=0 then 1 else (n-1)! *add (a(k)* b(n-k)/ (k-1)!/ (n-k)!, k=1..n) fi end end: B:= (p,n)-> (g@@p)(1)(n): seq(seq(B(d-n, n), n=1..d-1), d=1..12); # Alois P. Heinz, Feb 02 2009
-
Mathematica
g[k_] := g[k] = Nest[Function[x, E^x-1], x, k]; a[n_, k_] := SeriesCoefficient[ 1+g[k+1], {x, 0, n}]*n!; Table[a[n, k-n+1], {k, 1, 12}, {n, 1, k}] // Flatten (* Jean-François Alcover, Jan 28 2015 *)
Extensions
More terms from Alois P. Heinz, Feb 02 2009
Comments