cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153278 Array read by antidiagonals of higher order Fubini numbers.

Original entry on oeis.org

1, 1, 3, 1, 4, 13, 1, 5, 23, 75, 1, 6, 36, 175, 541, 1, 7, 52, 342, 1662, 4683, 1, 8, 71, 594, 4048, 18937, 47293, 1, 9, 93, 949, 8444, 57437, 251729, 545835, 1, 10, 118, 1425, 15775, 143783, 950512, 3824282, 7087261, 1, 11, 146, 2040, 27146, 313920, 2854261, 17975438, 65361237, 102247563
Offset: 1

Views

Author

Jonathan Vos Post, Dec 22 2008

Keywords

Examples

			The table on p.6 of Mezo begins:
===========================================================
F_p,n|n=1|n=2|n=3.|.n=4.|..n=5.|....n=6.|.....n=7.|comment
===========================================================
p=1..|.1.|.3.|.13.|..75.|..541.|...4683.|...47293.|.A000670
p=2..|.1.|.4.|.23.|.175.|.1662.|..18937.|..251729.|.A083355
p=3..|.1.|.5.|.36.|.342.|.4048.|..57437.|..950512.|.A099391
p=4..|.1.|.6.|.52.|.594.|.8444.|.143783.|.2854261.|.A363008
p=5..|.1.|.7.|.71.|.949.|15775.|.313920.|.7279795.|.A363009
===========================================================
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local k; if n<=1 then 1 else
           add(binomial(n, k) *f(n-k), k=1..n) fi
        end:
    stirtr:= proc(a) proc(n) option remember;
               add( a(k) *Stirling2(n,k), k=0..n)
             end end:
    F:= (p,n)-> (stirtr@@(p-1))(f)(n):
    seq(seq(F(d-n, n), n=1..d-1), d=1..13); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    f[n_] := f[n] = If[n <= 1, 1, Sum[Binomial[n, k]*f[n-k], {k, 1, n}]];
    stirtr[a_] := Module[{g}, g[n_] := g[n] = Sum[a[k]*StirlingS2[n, k], {k, 0, n}]; g];
    F[p_, n_] := (Composition @@ Table[stirtr, {p-1}])[f][n];
    Table[Table[F[d-n, n], {n, 1, d-1}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Mar 30 2016, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Feb 02 2009