cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153311 Coefficient triangle sequence of a polynomial recursion: p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2))); Row sums are 2*3^n.

Original entry on oeis.org

2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 36, 77, 45, 2, 2, 65, 167, 176, 74, 2, 2, 148, 313, 424, 412, 157, 2, 2, 393, 704, 980, 1079, 812, 402, 2, 2, 1124, 1826, 1684, 2788, 2620, 1943, 1133, 2, 2, 3313, 5137, 3510, 6659, 7595, 4563, 5263, 3322, 2, 2, 9876, 15011, 8647
Offset: 0

Views

Author

Roger L. Bagula, Dec 23 2008

Keywords

Comments

Row sums:
{2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098,...}.

Examples

			{2},
{3, 3},
{2, 14, 2},
{2, 25, 25, 2},
{2, 36, 77, 45, 2},
{2, 65, 167, 176, 74, 2},
{2, 148, 313, 424, 412, 157, 2},
{2, 393, 704, 980, 1079, 812, 402, 2},
{2, 1124, 1826, 1684, 2788, 2620, 1943, 1133, 2},
{2, 3313, 5137, 3510, 6659, 7595, 4563, 5263, 3322, 2},
{2, 9876, 15011, 8647, 10169, 20815, 18719, 9826, 15146, 9885, 2}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, n, m, x];
    p[x, 0] = 2; p[x, 1] = 3*x + 3; p[x, 2] = 2*x^2 + 14*x + 2;
    p[x_, n_] := p[x, n] = (x + 1)*(p[x, n - 1] + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2)));
    Table[ExpandAll[p[x, n]], {n, 0, 10}];
    Table[CoefficientList[p[x, n], x], {n, 0, 10}];
    Flatten[%]

Formula

p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2))).