cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153315 Denominators of continued fraction convergents to sqrt(5/4).

Original entry on oeis.org

1, 8, 17, 144, 305, 2584, 5473, 46368, 98209, 832040, 1762289, 14930352, 31622993, 267914296, 567451585, 4807526976, 10182505537, 86267571272, 182717648081, 1548008755920, 3278735159921, 27777890035288, 58834515230497, 498454011879264, 1055742538989025, 8944394323791464
Offset: 0

Views

Author

Charlie Marion, Jan 07 2009

Keywords

Comments

In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
a(k,0) = 1, a(k,1) = 2k; for n > 0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2)
and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
b(k,0) = 1, b(k,1) = 2k+1; for n > 0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2)
and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(4/3) start 1/1, 9/8, 19/17, 161/144, 341/305.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=4 and n=3, then a(4,n)=a(n) and
4*a(4,6)^2 - a(4,5)*a(4,7) = 4*5473^2 - 2584*46368 = 4;
4*a(4,4)*a(4,6) - a(4,5)^2 = 4*305*5473 - 2584^2 = 4;
b(4,5)*b(4,7) - 4*b(4,6)^2 = 2889*51841 - 4*6119^2 = 5;
b(4,5)^2 - 4*b(4,4)*b(4,6) = 2889^2 - 4*341*6119 = 5.

Examples

			The initial convergents are 1, 9/8, 19/17, 161/144, 341/305, 2889/2584, 6119/5473, 51841/46368, 109801/98209, 930249/832040, 1970299/1762289, ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[5/4], 30]] (* Harvey P. Dale, Aug 17 2012 *)

Formula

For n > 0, a(2n) = 2a(2n-1) + a(2n-2) and a(2n+1) = 8a(2n) + a(2n-1).
Empirical g.f.: (1 + 8*x - x^2)/(1 - 18*x^2 + x^4). - Colin Barker, Jan 01 2012
a(n) = (3 - (-1)^n)*Fibonacci(3*(n + 1))/4. - Ehren Metcalfe, Apr 04 2019

Extensions

Corrected and extended by Harvey P. Dale, Aug 17 2012