A153315 Denominators of continued fraction convergents to sqrt(5/4).
1, 8, 17, 144, 305, 2584, 5473, 46368, 98209, 832040, 1762289, 14930352, 31622993, 267914296, 567451585, 4807526976, 10182505537, 86267571272, 182717648081, 1548008755920, 3278735159921, 27777890035288, 58834515230497, 498454011879264, 1055742538989025, 8944394323791464
Offset: 0
Examples
The initial convergents are 1, 9/8, 19/17, 161/144, 341/305, 2889/2584, 6119/5473, 51841/46368, 109801/98209, 930249/832040, 1970299/1762289, ...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (0,18,0,-1).
Programs
-
Mathematica
Denominator[Convergents[Sqrt[5/4], 30]] (* Harvey P. Dale, Aug 17 2012 *)
Formula
For n > 0, a(2n) = 2a(2n-1) + a(2n-2) and a(2n+1) = 8a(2n) + a(2n-1).
Empirical g.f.: (1 + 8*x - x^2)/(1 - 18*x^2 + x^4). - Colin Barker, Jan 01 2012
a(n) = (3 - (-1)^n)*Fibonacci(3*(n + 1))/4. - Ehren Metcalfe, Apr 04 2019
Extensions
Corrected and extended by Harvey P. Dale, Aug 17 2012
Comments