A153318 Numerators of continued fraction convergents to sqrt(6/5).
1, 11, 23, 241, 505, 5291, 11087, 116161, 243409, 2550251, 5343911, 55989361, 117322633, 1229215691, 2575754015, 26986755841, 56549265697, 592479412811, 1241508091319, 13007560326001, 27256628743321, 285573847759211, 598404324261743, 6269617090376641, 13137638505015025
Offset: 0
Examples
The initial convergents are 1, 11/10, 23/21, 241/220, 505/461, 5291/4830, 11087/10121, 116161/106040, 243409/222201, 2550251/2328050, 55989361/4878301, ...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,22,0,-1).
Programs
-
Mathematica
Numerator[Convergents[Sqrt[6/5],20]] (* or *) LinearRecurrence[{0,22,0,-1},{1,11,23,241},20] (* Harvey P. Dale, Jul 30 2018 *)
Formula
For n>0, a(2*n) = 2*a(2*n-1) + a(2*n-2) and a(2*n+1) = 10*a(2*n) + a(2*n-1).
G.f.: (1+11*x+x^2-x^3)/(1-22*x^2+x^4). - Colin Barker, Jan 01 2012