cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153318 Numerators of continued fraction convergents to sqrt(6/5).

Original entry on oeis.org

1, 11, 23, 241, 505, 5291, 11087, 116161, 243409, 2550251, 5343911, 55989361, 117322633, 1229215691, 2575754015, 26986755841, 56549265697, 592479412811, 1241508091319, 13007560326001, 27256628743321, 285573847759211, 598404324261743, 6269617090376641, 13137638505015025
Offset: 0

Views

Author

Charlie Marion, Jan 07 2009

Keywords

Examples

			The initial convergents are 1, 11/10, 23/21, 241/220, 505/461, 5291/4830, 11087/10121, 116161/106040, 243409/222201, 2550251/2328050, 55989361/4878301, ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[6/5],20]] (* or *) LinearRecurrence[{0,22,0,-1},{1,11,23,241},20] (* Harvey P. Dale, Jul 30 2018 *)

Formula

For n>0, a(2*n) = 2*a(2*n-1) + a(2*n-2) and a(2*n+1) = 10*a(2*n) + a(2*n-1).
G.f.: (1+11*x+x^2-x^3)/(1-22*x^2+x^4). - Colin Barker, Jan 01 2012