cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A255967 Odd numbers m that are neither of the form p + 2^k nor of the form p - 2^k with 2^k < m, k >= 1, and p prime.

Original entry on oeis.org

1, 1973, 3181, 3967, 4889, 5617, 7747, 7913, 8363, 8587, 8923, 11437, 11993, 12517, 13285, 13973, 14101, 14231, 14489, 16117, 16769, 16849, 18391, 18611, 19583, 19819, 21289, 21683, 21701, 21893, 22147, 22817, 22949, 23651, 24943, 25829, 27197, 27437
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 12 2015

Keywords

Comments

Odd numbers m such that for all 2^k < m the numbers m + 2^k and m - 2^k are composite, with k >= 1.

Crossrefs

Cf. A076335.
Subsequence of A006285. Supersequence of A256163.
A153352 gives the primes.

Programs

  • Magma
    lst:=[]; for n in [1..27437 by 2] do t:=0; k:=0; while 2^k lt n do if IsPrime(n-2^k) or IsPrime(n+2^k) then t:=1; break; end if; k+:=1; end while; if IsZero(t) then Append(~lst, n); end if; end for; lst;
    
  • Mathematica
    q[m_] :=  If[EvenQ[m], False, Module[{pow = 2},While[pow < m && !PrimeQ[m - pow] && !PrimeQ[m + pow], pow *= 2]; pow > m]]; Select[Range[30000], q] (* Amiram Eldar, Jul 19 2025 *)
  • PARI
    isok(m) = if(!(m % 2), 0, my(pow = 2); while(pow < m && !isprime(m - pow) && !isprime(m + pow), pow *= 2); pow > m); \\ Amiram Eldar, Jul 19 2025

A256237 Primes p such that for all 2^k < p the numbers p + 2^k, p - 2^k, p*2^k + 1, and p*2^k - 1 are composite.

Original entry on oeis.org

8923, 24943, 35437, 42533, 52783, 83437, 105953, 116437, 126631, 133241, 145589, 164729, 172331, 192173, 204013, 215279, 254329, 304709, 308899, 398833, 430499, 436687, 454351, 476869, 479909, 483443, 497597, 522479, 527729, 529103, 545257, 561439, 562651
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 20 2015

Keywords

Crossrefs

Subsequence of A256163.

Programs

  • Magma
    lst:=[]; for p in [3..562651 by 2] do if IsPrime(p) then t:=0; k:=0; while 2^k lt p do if IsPrime(p-2^k) or IsPrime(p+2^k) or IsPrime(p*2^k-1) or IsPrime(p*2^k+1) then t:=1; break; end if; k+:=1; end while; if IsZero(t) then Append(~lst, p); end if; end if; end for; lst;

A263645 Primes that are neither of the form p + 2^k nor of the form p - 2^k with k > 0, and p prime.

Original entry on oeis.org

2, 52504261, 55414847, 79933129, 152485283, 166441831, 177702619, 197903207, 199013093, 220403959, 226794259, 230701763, 245215801, 266642731, 304921637, 321979283, 335035097, 355404353, 359018299, 369810769, 388048561, 412590797, 445661719, 506400173, 540426473
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2015

Keywords

Comments

Primes p such that for all k > 0 the numbers p + 2^k and p - 2^k are nonprimes.
Except for 2, this sequence is the intersection of A065381 and A137715.

Crossrefs

A281907 Numbers congruent to 47867742232066880047611079 modulo 66483034025018711639862527490.

Original entry on oeis.org

47867742232066880047611079, 66530901767250778519910138569, 133013935792269490159772666059, 199496969817288201799635193549, 265980003842306913439497721039, 332463037867325625079360248529, 398946071892344336719222776019, 465429105917363048359085303509
Offset: 1

Views

Author

Felix Fröhlich, Feb 01 2017

Keywords

Comments

The terms of this sequence cannot be written as +-p^a +-q^b with p, q prime and a, b nonnegative integers for any possible choice of signs (cf. Theorem in Sun, 2000).
47867742232066880047611079 is a Brier number (A076335). - Jeppe Stig Nielsen, Sep 16 2020

Crossrefs

Cf. A153352.

Programs

  • Mathematica
    Table[66483034025018711639862527490 n + 47867742232066880047611079, {n, 0, 7}] (* Michael De Vlieger, Feb 02 2017 *)
  • PARI
    a(n) = 66483034025018711639862527490*n+47867742232066880047611079

Formula

a(n) = 66483034025018711639862527490*n + 47867742232066880047611079.
Showing 1-4 of 4 results.