cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153395 G.f.: A(x) = F(x*G(x)) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 3, 13, 69, 417, 2754, 19373, 142732, 1088875, 8533278, 68308641, 556242792, 4593529882, 38380159009, 323860968709, 2756019889146, 23625552635184, 203823793118268, 1768357487401595, 15418860927887232, 135042445950316514
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Comments

This appears to be the same as the sequence in row 1 of Fig. 21 of Novelli-Thibon 2014. - N. J. A. Sloane, Jun 14 2014

Examples

			G.f.: A(x) = F(x*G(x)) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1050*x^5 +...
G(x)*A(x)^2 = 1 + 3*x + 13*x^2 + 69*x^3 + 417*x^4 + 2754*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 21;
    G[_] = 0;
    Do[G[x_] = 1 + x*G[x]^4 + O[x]^nmax, nmax];
    F[x_] = Sum[CatalanNumber[n] x^n, {n, 0, nmax}];
    A[x_] = F[x G[x]];
    CoefficientList[A[x], x] (* Jean-François Alcover, Sep 09 2018 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+k,n-k)*k/(4*(n-k)+k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(4n-3k,n-k)*k/(4n-3k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)*A(x)^2 where G(x) is the g.f. of A002293.
G.f. satisfies: A(x/F(x)^2) = F(x/F(x)) where F(x) is the g.f. of A000108.
G.f. satisfies: A(x/H(x)) = F(x) where H(x) = 1 + x*H(x)^3 is the g.f. of A001764 and F(x) is the g.f. of A000108.