A153395 G.f.: A(x) = F(x*G(x)) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.
1, 1, 3, 13, 69, 417, 2754, 19373, 142732, 1088875, 8533278, 68308641, 556242792, 4593529882, 38380159009, 323860968709, 2756019889146, 23625552635184, 203823793118268, 1768357487401595, 15418860927887232, 135042445950316514
Offset: 0
Keywords
Examples
G.f.: A(x) = F(x*G(x)) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 +... where F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +... F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +... G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +... G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +... G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +... G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +... A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1050*x^5 +... G(x)*A(x)^2 = 1 + 3*x + 13*x^2 + 69*x^3 + 417*x^4 + 2754*x^5 +...
Links
- J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014.
Programs
-
Mathematica
nmax = 21; G[_] = 0; Do[G[x_] = 1 + x*G[x]^4 + O[x]^nmax, nmax]; F[x_] = Sum[CatalanNumber[n] x^n, {n, 0, nmax}]; A[x_] = F[x G[x]]; CoefficientList[A[x], x] (* Jean-François Alcover, Sep 09 2018 *)
-
PARI
{a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+k,n-k)*k/(4*(n-k)+k)))}
Comments