cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A153396 G.f.: A(x) = F(x*G(x)^3) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 5, 32, 228, 1726, 13587, 109923, 907499, 7609898, 64609346, 554108863, 4792190298, 41739160686, 365746143064, 3221723465187, 28509044813580, 253295607463902, 2258539046009268, 20203103111671575, 181242298665210280
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^3) = 1 + x + 5*x^2 + 32*x^3 + 228*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 74*x^3 + 545*x^4 + 4228*x^5 +...
G(x)^3*A(x)^2 = 1 + 5*x + 32*x^2 + 228*x^3 + 1726*x^4 + 13587*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[2k+1,k]/(2k+1) Binomial[4n-k,n-k]3 k/(4n-k), {k,0,n}],{n,20}]] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+3*k,n-k)*3*k/(4*(n-k)+3*k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(4n-k,n-k)*3k/(4n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)^3*A(x)^2 where G(x) is the g.f. of A002293.
G.f. satisfies: A(x/F(x)^2) = F(x*F(x)) where F(x) is the g.f. of A000108.
G.f. satisfies: A(x/H(x)) = F(x*H(x)^2) where H(x) = 1 + x*H(x)^3 is the g.f. of A001764 and F(x) is the g.f. of A000108.
G.f. satisfies: A(-x*A(x)^9) = 1/A(x). - Alexander Burstein, Apr 14 2020
Recurrence: 243*(n-1)*n*(n+1)*(3*n - 5)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(147456*n^6 - 1998336*n^5 + 11209920*n^4 - 33294250*n^3 + 55173779*n^2 - 48321229*n + 17452260)*a(n) = 72*(n-1)*n*(3*n - 5)*(3*n - 4)*(127401984*n^9 - 2045067264*n^8 + 14240360448*n^7 - 56278911936*n^6 + 138595592064*n^5 - 219567715966*n^4 + 222542820712*n^3 - 138190518059*n^2 + 47259501167*n - 6683489400)*a(n-1) - 48*(n-1)*(16307453952*n^12 - 351459606528*n^11 + 3428587929600*n^10 - 20001961205760*n^9 + 77643945578496*n^8 - 211031837008384*n^7 + 411217026027200*n^6 - 577827896836090*n^5 + 579810023200127*n^4 - 403994885007838*n^3 + 184802213339825*n^2 - 49548085570200*n + 5838168798000)*a(n-2) + 128*(2*n - 5)*(4*n - 11)*(4*n - 9)*(8*n - 23)*(8*n - 21)*(8*n - 19)*(8*n - 17)*(147456*n^6 - 1113600*n^5 + 3430080*n^4 - 5488810*n^3 + 4779029*n^2 - 2123685*n + 369600)*a(n-3). - Vaclav Kotesovec, Feb 22 2015
a(n) ~ (256/27)^n / n^(5/4) * (3^(1/4)*sqrt(EllipticK(1/sqrt(2)))/(2*Pi)^(3/4) - sqrt(3/(2*Pi))/n^(1/4) + (2/(3*Pi))^(1/4) / sqrt(EllipticK(1/sqrt(2)))/n^(1/2)), where EllipticK(1/sqrt(2)) = A093341 = GAMMA(1/4)^2/(4*(Pi)^(1/2)) = 1.85407467730137191843385... (= EllipticK[1/2] in Mathematica). - Vaclav Kotesovec, Feb 22 2015

A153394 G.f.: A(x) = F(x*G(x)^2)^3 where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan).

Original entry on oeis.org

1, 3, 18, 118, 813, 5799, 42470, 317637, 2416671, 18649874, 145655292, 1149199212, 9146686605, 73354982763, 592217363334, 4809250320023, 39258457746069, 321964620209940, 2651536017682988, 21919266484180533, 181820251665093357
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^2)^3 = 1 + 3*x + 18*x^2 + 118*x^3 + 813*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+3,k)/(k+1)*binomial(2*n,n-k)*k/n))}

Formula

a(n) = Sum_{k=0..n} C(3k+3,k)/(k+1) * C(2n,n-k)*k/n for n>0 with a(0)=1.
G.f. satisfies: A(x*F(x)) = F(x*F(x)^3)^3 = F(F(x)-1)^3 where F(x) is the g.f. of A001764.
Showing 1-2 of 2 results.