A153409 Smallest of 3 consecutive prime numbers such that p1*p2*p3*d1*d2=average of twin prime pairs; p1,p2,p3 consecutive prime numbers; d1(delta)=p2-p1, d2(delta)=p3-p2.
2, 3, 19, 61, 229, 499, 677, 1009, 1753, 2089, 2791, 3167, 10657, 12379, 12893, 13477, 15139, 18553, 20551, 21871, 25367, 26227, 26669, 33601, 36781, 36931, 41399, 41413, 43543, 61543, 63331, 63839, 68903, 71993, 75709, 76343, 76471, 86629
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
lst={};Do[p1=Prime[n];p2=Prime[n+1];p3=Prime[n+2];d1=p2-p1;d2=p3-p2;a=p1*p2*p3*d1*d2;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p1]],{n,8!}];lst cpnQ[{a_,b_,c_}]:=Module[{pr=a*b*c*(b-a)*(c-b)},AllTrue[pr+{1,-1}, PrimeQ]]; Transpose[Select[Partition[Prime[Range[10000]],3,1], cpnQ]][[1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 24 2015 *)
Comments