cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153409 Smallest of 3 consecutive prime numbers such that p1*p2*p3*d1*d2=average of twin prime pairs; p1,p2,p3 consecutive prime numbers; d1(delta)=p2-p1, d2(delta)=p3-p2.

Original entry on oeis.org

2, 3, 19, 61, 229, 499, 677, 1009, 1753, 2089, 2791, 3167, 10657, 12379, 12893, 13477, 15139, 18553, 20551, 21871, 25367, 26227, 26669, 33601, 36781, 36931, 41399, 41413, 43543, 61543, 63331, 63839, 68903, 71993, 75709, 76343, 76471, 86629
Offset: 1

Views

Author

Keywords

Comments

2*3*5*1*2=60+-1=primes, 3*5*7*2*2=420+-1=primes, 19*23*29*4*6=304152+-1=primes,...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p1=Prime[n];p2=Prime[n+1];p3=Prime[n+2];d1=p2-p1;d2=p3-p2;a=p1*p2*p3*d1*d2;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p1]],{n,8!}];lst
    cpnQ[{a_,b_,c_}]:=Module[{pr=a*b*c*(b-a)*(c-b)},AllTrue[pr+{1,-1}, PrimeQ]]; Transpose[Select[Partition[Prime[Range[10000]],3,1], cpnQ]][[1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 24 2015 *)