A153411 Larger of 3 consecutive prime numbers such that p1*p2*p3*d1*d2=average of twin prime pairs; p1,p2,p3 consecutive prime numbers; d1(delta)=p2-p1, d2(delta)=p3-p2.
5, 7, 29, 71, 239, 509, 691, 1019, 1777, 2111, 2801, 3181, 10667, 12401, 12907, 13499, 15161, 18587, 20593, 21893, 25391, 26249, 26683, 33617, 36791, 36947, 41413, 41453, 43577, 61553, 63347, 63853, 68917, 72019, 75731, 76369, 76487, 86689
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
lst={};Do[p1=Prime[n];p2=Prime[n+1];p3=Prime[n+2];d1=p2-p1;d2=p3-p2;a=p1*p2*p3*d1*d2;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p3]],{n,8!}];lst tppQ[n_]:=Module[{c=Times@@Join[n,Differences[n]]},AllTrue[c+{1,-1}, PrimeQ]]; Transpose[Select[Partition[Prime[Range[10^4]],3,1], tppQ]] [[3]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 17 2016 *)
Comments