cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153446 Terms in A046034 which are pairwise products of terms in A046034.

Original entry on oeis.org

25, 35, 75, 225, 275, 375, 525, 575, 2275, 2325, 2555, 2775, 3775, 5575, 5775, 7575, 7725, 7755, 22575, 22725, 23275, 23325, 23725, 25275, 25375, 25575, 25725, 27335, 27375, 27775, 32775, 37275, 37775, 52325, 53325, 55225, 55275, 55575, 57375
Offset: 1

Views

Author

Zak Seidov, Dec 26 2008

Keywords

Comments

All terms are = 5 (mod 10).

Examples

			25 = 5*5 = A046034(3)*A046034(3) = A046034(7);
35 = 5*7 = A046034(3)*A046034(4) = A046034(11);
75 = 3*25 = A046034(2)*A046034(7) = A046034(19);
225 = 3*75 = A046034(2)*A046034(19) = A046034(23);
275 = 5*55 = A046034(3)*A046034(15) = A046034(35).
		

Crossrefs

Cf. A046034 (numbers with prime digits).

Programs

  • Mathematica
    Select[Flatten@ Table[FromDigits /@ Tuples[{2, 3, 5, 7}, n], {n, 5}], Function[k, Total@ Map[Times @@ # &, Boole@ Map[Total@ Pick[DigitCount@ #, {1, 0, 0, 1, 0, 1, 0, 1, 1, 1}, 1] == 0 &, Transpose@ {#, k/#} &@ Rest@ Take[#, Ceiling[Length[#]/2]] &@ Divisors@ k, {2}]] > 0]] (* Michael De Vlieger, Sep 19 2016 *)
    id[n_]:=IntegerDigits[n]; pQ[n_]:=AllTrue[id[n],PrimeQ];
    nQ[n_]:=Select[Times@@@Tuples[Select[Divisors[n],AllTrue[id[#],PrimeQ]&],2],#==n&]
    !={};
    Select[Flatten@Table[FromDigits/@Tuples[{2,3,5,7},n],{n,5}],pQ[#]&&nQ[#]&] (* Ivan N. Ianakiev, Jul 20 2022 *)