A153490 Sierpinski carpet, read by antidiagonals.
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
Offset: 1
Examples
The Sierpinski carpet matrix reads 1 1 1 1 1 1 1 1 1 ... 1 0 1 1 0 1 1 0 1 ... 1 1 1 1 1 1 1 1 1 ... 1 1 1 0 0 0 1 1 1 ... 1 0 1 0 0 0 1 0 1 ... 1 1 1 0 0 0 1 1 1 ... 1 1 1 1 1 1 1 1 1 ... 1 0 1 1 0 1 1 0 1 ... 1 1 1 1 1 1 1 1 1 ... (...) so the antidiagonals are {1}, {1, 1}, {1, 0, 1}, {1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 0, 1, 1, 0, 1}, {1, 1, 1, 0, 1, 1, 1}, {1, 1, 1, 0, 0, 1, 1, 1}, {1, 0, 1, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 0, 0, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1}, ...
Links
- Eric Weisstein's World of Mathematics, Sierpinski Carpet.
- Wikipedia, Sierpinski carpet.
Crossrefs
Programs
-
Mathematica
<< MathWorld`Fractal`; fractal = SierpinskiCarpet; a = fractal[4]; Table[Table[a[[m]][[n - m + 1]], {m, 1, n}], {n, 1, 12}]; Flatten[%]
-
PARI
A153490_row(n,A=Mat(1))={while(#A
M. F. Hasler, Oct 23 2017
Extensions
Edited by M. F. Hasler, Oct 20 2017
Comments