A153497 a(n) is the number whose binary expansion is A153498(n).
1, 7, 21, 73, 341, 1453, 5461, 21157, 87381, 354997, 1398101, 5548693, 22369621, 89828053, 357913941, 1428859477, 5726623061, 22928862037, 91625968981, 366324918613, 1466015503701, 5865493671253, 23456248059221, 93813538989397
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (5, -14, 50, -56, 80, -64).
Programs
-
Mathematica
LinearRecurrence[{5,-14,50,-56,80,-64},{1,7,21,73,341,1453},30] (* Harvey P. Dale, Nov 21 2012 *)
Formula
From R. J. Mathar, Feb 20 2009: (Start)
a(n) = 5*a(n-1) - 14*a(n-2) + 50*a(n-3) - 56*a(n-4) + 80*a(n-5) - 64*a(n-6).
G.f.: x*(1 +2x +16x^3 -24x^4 +32x^5)/((1-x)*(1-4x)*(1+2x^2)*(1+8x^2)). (End)
Extensions
More terms from R. J. Mathar, Feb 20 2009