cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A144864 a(n) = (4*16^(n-1)-1)/3.

Original entry on oeis.org

1, 21, 341, 5461, 87381, 1398101, 22369621, 357913941, 5726623061, 91625968981, 1466015503701, 23456248059221, 375299968947541, 6004799503160661, 96076792050570581, 1537228672809129301, 24595658764946068821, 393530540239137101141, 6296488643826193618261, 100743818301219097892181
Offset: 1

Views

Author

Artur Jasinski, Sep 23 2008

Keywords

Comments

Old name was: A144863, read as binary numbers, converted to base 10.
All numbers in this sequence for n>1 are congruent to 5 mod 16. - Artur Jasinski, Sep 25 2008
From Omar E. Pol, Sep 10 2011: (Start)
It appears that this is a bisection of A002450.
It appears that this is a bisection of A084241.
It appears that this is a bisection of A153497.
It appears that this is a bisection of A088556, if n>=2.
(End)
All of the above is trivially true. - Joerg Arndt, Aug 19 2014
The aerated sequence (b(n))n>=1 = [1, 0, 21, 0, 341, 0, 5461, 0, 87381, ...] is a fourth-order linear divisibility sequence; that is, a(n) divides a(m) whenever n divides m. It is the case P1 = 0, P2 = -9, Q = -4 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Aug 26 2022

Crossrefs

Third quadrisection of Jacobsthal numbers A001045; the other quadrisections are A195156 (first), A139792 (second), and A141060 (fourth).

Programs

  • Magma
    [16^n/12-1/3: n in [1..20]]; // Vincenzo Librandi, Aug 03 2011
    
  • Mathematica
    Table[1/3 (-1 + 16^(n - 1)) + 16^(n - 1), {n, 1, 17}] (* Artur Jasinski, Sep 25 2008 *)
    LinearRecurrence[{17,-16},{1,21},20] (* Harvey P. Dale, Jun 29 2022 *)
  • PARI
    vector(66,n,(4*16^(n-1)-1)/3) \\ Joerg Arndt, Aug 19 2014

Formula

a(n) = 16^n/12 - 1/3; a(n) = 16*a(n-1) + 5, a(1)=1. - Artur Jasinski, Sep 25 2008
G.f.: x*(1+4*x) / ( (16*x-1)*(x-1) ). - R. J. Mathar, Jan 06 2011
a(n)=b such that Integral_{x=-Pi/2..Pi/2} (-1)^(n+1)*2^(2*n-3)*(cos((2*n-1)*x))/(5/4+sin(x)) dx = c+b*log(3). - Francesco Daddi, Aug 02 2011
a(n) = (2^(4*n-2)-1)/3. - Klaus Purath, Jan 31 2021
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n-2).
a(n+1) - a(n) = 10*A013776(n-1) = 20*A001025(n-1) for n >= 1.
a(n) = 10*A098704(n) + 1 = 20*A131865(n-2) + 1 for n >= 2. (End)
E.g.f.: (exp(16*x) - 4*exp(x) + 3)/12. - Stefano Spezia, Apr 18 2024

Extensions

New name from Joerg Arndt, Aug 19 2014

A153498 Palindromes formed from concatenation of A147759(n) and the same string A147759(n) but without its initial digit.

Original entry on oeis.org

1, 111, 10101, 1001001, 101010101, 10110101101, 1010101010101, 101001010100101, 10101010101010101, 1010110101010110101, 101010101010101010101, 10101001010101010010101
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2008, Feb 18 2009

Keywords

Comments

a(n) is also A153497(n) written in base 2.

Examples

			n ............. a(n)
1 .............. 1
2 ............. 111
3 ............ 10101
4 ........... 1001001
5 .......... 101010101
6 ......... 10110101101
7 ........ 1010101010101
8 ....... 101001010100101
9 ...... 10101010101010101
10 .... 1010110101010110101
11 ... 101010101010101010101
======================================
Another visualization of the structure
======================================
1 .............. *
2 ............. /|\
3 ............ /.|.\
4 ........... /..|..\
5 .......... /.*.|.*.\
6 ......... /./|.|.|\.\
7 ........ /./.|.|.|.\.\
8 ....... /./..|.|.|..\.\
9 ...... /./.*.|.|.|.*.\.\
10 .... /././|.|.|.|.|\.\.\
11 ... /././.|.|.|.|.|.\.\.\
		

Crossrefs

Formula

From R. J. Mathar, Feb 20 2009: (Start)
a(n)=101*a(n-1)-1110*a(n-2)+102010*a(n-3)-111000*a(n-4)+1010000*a(n-5)-1000000*a(n-6).
G.f.: x(1+10x+2000x^3-91000*x^4+100000x^5)/((1-100x)(1-x)(1+10x^2)(1+1000x^2)). (End)

Extensions

More terms from R. J. Mathar, Feb 20 2009
Keyword:base added by Charles R Greathouse IV, Apr 23 2010

A153499 a(n) is the number whose binary expansion is A153500(n).

Original entry on oeis.org

1, 5, 17, 85, 365, 1365, 5285, 21845, 88757, 349525, 1387157, 5592405, 22457045, 89478485, 357214805, 1431655765, 5732215637, 22906492245, 91581229397, 366503875925, 1466373418325, 5864062014805, 23453384746325, 93824992236885
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2008

Keywords

Comments

Empirical g.f. confirmed similar to A153497 and A153498. - Ray Chandler, Oct 15 2024

Crossrefs

Formula

Empirical g.f.: -x*(64*x^6-80*x^5+16*x^4-20*x^3-6*x^2-1) / ((x-1)*(4*x-1)*(2*x^2+1)*(8*x^2+1)). - Colin Barker, Sep 17 2013

Extensions

More terms from R. J. Mathar, Feb 20 2009

A153500 First 3 terms coincide with A152756. For n>3, a(n) is the palindromic number formed from concatenation of 1, 0, A147759(n-3), 0, A147759(n-3), 0 and 1.

Original entry on oeis.org

1, 101, 10001, 1010101, 101101101, 10101010101, 1010010100101, 101010101010101, 10101101010110101, 1010101010101010101, 101010010101010010101, 10101010101010101010101, 1010101101010101011010101, 101010101010101010101010101, 10101010010101010101001010101
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2008, Feb 18 2009

Keywords

Comments

a(n) is also A153499(n) written in base 2.

Examples

			n ............ a(n)
1 ............. 1
2 ............ 101
3 ........... 10001
4 .......... 1010101
5 ......... 101101101
6 ........ 10101010101
7 ....... 1010010100101
8 ...... 101010101010101
9 ..... 10101101010110101
10 ... 1010101010101010101
======================================
Another visualization of the structure
======================================
1 ............. *
2 ............ /.\
3 ........... /...\
4 .......... /.*.*.\
5 ......... /./|.|\.\
6 ........ /./.|.|.\.\
7 ....... /./..|.|..\.\
8 ...... /./.*.|.|.*.\.\
9 ..... /././|.|.|.|\.\.\
10 ... /././.|.|.|.|.\.\.\
		

Crossrefs

Formula

a(n) = 101*a(n-1)-1110*a(n-2)+102010*a(n-3)-111000*a(n-4)+1010000*a(n-5)-1000000*a(n-6), n>7. [R. J. Mathar, Feb 20 2009]
G.f.: -x*(1000000*x^6-1010000*x^5+10000*x^4-10100*x^3-910*x^2-1) / ((x-1)*(100*x-1)*(10*x^2+1)*(1000*x^2+1)). [Colin Barker, Sep 17 2013]

Extensions

More terms from R. J. Mathar, Feb 20 2009
Keyword:base added by Charles R Greathouse IV, Apr 26 2010
More terms from Colin Barker, Sep 17 2013
Showing 1-4 of 4 results.