cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153518 Triangular T(n,k) = T(n-1, k) + T(n-1, k-1) + 5*T(n-2, k-1), read by rows.

Original entry on oeis.org

2, 5, 5, 2, 46, 2, 2, 123, 123, 2, 2, 135, 476, 135, 2, 2, 147, 1226, 1226, 147, 2, 2, 159, 2048, 4832, 2048, 159, 2, 2, 171, 2942, 13010, 13010, 2942, 171, 2, 2, 183, 3908, 26192, 50180, 26192, 3908, 183, 2, 2, 195, 4946, 44810, 141422, 141422, 44810, 4946, 195, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 28 2008

Keywords

Examples

			Triangle begins as:
  2;
  5,   5;
  2,  46,    2;
  2, 123,  123,     2;
  2, 135,  476,   135,      2;
  2, 147, 1226,  1226,    147,      2;
  2, 159, 2048,  4832,   2048,    159,     2;
  2, 171, 2942, 13010,  13010,   2942,   171,    2;
  2, 183, 3908, 26192,  50180,  26192,  3908,  183,   2;
  2, 195, 4946, 44810, 141422, 141422, 44810, 4946, 195, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), this sequences (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Cf. A123011.

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,0,1,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
  • Maple
    A153518 := proc(n,k) option remember ; if n =1 then 2; elif n = 2 then 5; elif k=1 or k=n then 2; elif n = 3 then 46 ; elif n = 4 then 123 ; else procname(n-1,k-1)+procname(n-1,k)+5*procname(n-2,k-1) ; end: end: for n from 1 to 13 do for k from 1 to n do printf("%d,",A153518(n,k)) ; od: od: # R. J. Mathar, Jan 22 2009
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,0,1,3], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,0,1,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
    

Formula

T(n,k) = T(n-1, k) + T(n-1, k-1) + 5*T(n-2, k-1).
Recurrence row sums: s(n) = 2*s(n-1) + 5*s(n-2), n > 4, with s(1) = 2, s(2) = 10, s(3) = 50, s(4) = 250. - R. J. Mathar, Jan 22 2009
From G. C. Greubel, Mar 04 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q, j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p, q, j) = (0,1,3).
Sum_{k=0..n} T(n,k,0,1,3) = 4*(-5)^n*[n<2] + 50*(i*sqrt(5))^(n-2)*(ChebyshevU(n-2, -i/sqrt(5)) - (3*i/sqrt(5))*ChebyshevU(n-3, -i/sqrt(5))) = 4*(-5)^n*[n<2] + 50*A123011(n-2). (End)

Extensions

More terms from R. J. Mathar, Jan 22 2009
Edited by G. C. Greubel, Mar 04 2021